1. Because $U$ is a unitary transformation

$$
U^{\dagger} U=I
$$

Using the infinitesimal form gives

$$
\begin{aligned}
U^{\dagger} U & =I \\
\left(I-\frac{i \varepsilon}{\hbar} G\right)^{\dagger}\left(I-\frac{i \varepsilon}{\hbar} G\right) & =I \\
\left(I+\frac{i \varepsilon}{\hbar} G^{\dagger}\right)\left(I-\frac{i \varepsilon}{\hbar} G\right) & =I \\
I-\frac{i \varepsilon}{\hbar} G+\frac{i \varepsilon}{\hbar} G^{\dagger}+\frac{\varepsilon^{2}}{\hbar^{2}} G^{\dagger} G & =I
\end{aligned}
$$

Because the infinitesimal form is only first order, we neglect the term of second order in the small quantity $\varepsilon$ to get

$$
\begin{aligned}
I-\frac{i \varepsilon}{\hbar} G+\frac{i \varepsilon}{\hbar} G^{\dagger} & =I \\
\frac{i \varepsilon}{\hbar}\left(G^{\dagger}-G\right) & =0 \\
& \Rightarrow G=G^{\dagger}
\end{aligned}
$$

which means that $G$ is Hermitian.
2. (a) The possible results of a measurement of the spin component $S_{x}$ are always $\pm \hbar / 2$ for a spin $-1 / 2$ particle. The probabilities are

$$
\begin{aligned}
& \mathcal{P}_{+x}=\left|{ }_{x}\langle+\mid \psi(0)\rangle\right|^{2}=\left\lvert\,\left.\left(\frac{1}{\sqrt{2}}\langle+|+\frac{1}{\sqrt{2}}\langle-|\right)|+\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}\right. \\
& \mathcal{P}_{-x}=\left|{ }_{x}\langle-\mid \psi(0)\rangle\right|^{2}=\left\lvert\,\left.\left(\frac{1}{\sqrt{2}}\langle+|-\frac{1}{\sqrt{2}}\langle-|\right)|+\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}\right.
\end{aligned}
$$

(b) In a field aligned along the $y$-axis, the Hamiltonian is

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}=-(\gamma \mathbf{S}) \cdot B_{0} \hat{\mathbf{y}}=-\gamma B_{0} S_{y}=-\frac{\gamma B_{0} \hbar}{2} \sigma_{y}
$$

where $\gamma=-e / m c$. Hence the time evolution operator is

$$
U(t)=e^{-i H t / \hbar}=e^{i \gamma B_{0} \sigma_{y} / 2}=e^{i \omega_{0} \sigma_{y} / 2}
$$

where $\omega_{0}=\gamma B_{0}<0$. This looks like a rotation about $y$ by $\theta=-\omega_{0} t / 2$ :

$$
U(t)=e^{i \omega_{0} \sigma_{y} / 2}=\cos \left(\frac{\omega_{0} t}{2}\right) \mathbf{I}+i \sin \left(\frac{\omega_{0} t}{2}\right) \sigma_{y}
$$

In matrix form, we have

$$
U(t) \doteq\left(\begin{array}{cc}
\cos \left(\frac{\omega_{0} t}{2}\right) & \sin \left(\frac{\omega_{0} t}{2}\right) \\
-\sin \left(\frac{\omega_{0} t}{2}\right) & \cos \left(\frac{\omega_{0} t}{2}\right)
\end{array}\right)
$$

The initial state vector is

$$
|\psi(0)\rangle=|+\rangle \doteq\binom{1}{0}
$$

The time-evolved state is

$$
|\psi(t)\rangle=U(t)|\psi(0)\rangle \doteq\left(\begin{array}{cc}
\cos \left(\frac{\omega_{0} t}{2}\right) & \sin \left(\frac{\omega_{0} t}{2}\right) \\
-\sin \left(\frac{\omega_{0} t}{2}\right) & \cos \left(\frac{\omega_{0} t}{2}\right)
\end{array}\right)\binom{1}{0}=\binom{\cos \left(\frac{\omega_{0} t}{2}\right)}{-\sin \left(\frac{\omega_{0} t}{2}\right)}
$$

The probability of measuring $S_{x}$ to be $+\hbar / 2$ is

$$
\begin{aligned}
\mathcal{P}_{+x} & =|x\langle+\mid \psi(t)\rangle|^{2}=\left|\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{\cos \left(\frac{\omega_{0} t}{2}\right)}{-\sin \left(\frac{\omega_{0} t}{2}\right)}\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}} \cos \left(\omega_{0} t / 2\right)-\frac{1}{\sqrt{2}} \sin \left(\omega_{0} t / 2\right)\right|^{2}=\frac{1}{2}\left(1-2 \cos \left(\omega_{0} t / 2\right) \sin \left(\omega_{0} t / 2\right)\right) \\
& =\frac{1}{2}\left(1-\sin \omega_{0} t\right)
\end{aligned}
$$

Note that $\omega_{0}=\gamma B_{0}<0$.
3. The eigenstates of $L_{\mathrm{z}}$ are

$$
|m\rangle \doteq \Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

It is useful to write the state vector in terms of these eigenstates, giving

$$
\begin{aligned}
\psi(\rho, \phi) & =A e^{-\rho^{2} / 2 \Delta^{2}} \cos ^{3} \phi=A e^{-\rho^{2} / 2 \Delta^{2}}\left(\frac{e^{i \phi}+e^{-i \phi}}{2}\right)^{3} \\
& =\frac{A}{8} e^{-\rho^{2} / 2 \Delta^{2}}\left(e^{3 i \phi}+3 e^{i \phi}+3 e^{-i \phi}+e^{-3 i \phi}\right) \\
& =\frac{A}{8} e^{-\rho^{2} / 2 \Delta^{2}} \sqrt{2 \pi}(|3\rangle+3|1\rangle+3|-1\rangle+|-3\rangle)
\end{aligned}
$$

To find the probability of measuring $L_{z}$ we project the state vector onto the $L_{z}$ eigenstate in question, square the amplitude, and then sum over all possible ways to obtain that probability. We solve this problem by using the continuous radial coordinate basis $|\rho\rangle$
and integrating over all possible values of that eigenvalue (see Eqn. 12.5.38 for 3D example):

$$
\mathcal{P}_{L_{z}=m h}=\int_{0}^{\infty}|\langle\rho m \mid \psi\rangle|^{2} \rho d \rho
$$

Note that the radial integral is outside the absolute value to add up all the possible probabilities $\left(\int\left|c_{m}(\rho)\right|^{2} \rho d \rho\right)$. For the state vector given above, this results in

$$
\begin{aligned}
\mathcal{P}_{L_{z}=m h} & =\int_{0}^{\infty}\left|\langle m| \frac{A}{8} e^{-\rho^{2} / 2 \Delta^{2}} \sqrt{2 \pi}(|3\rangle+3|1\rangle+3|-1\rangle+|-3\rangle)\right|^{2} \rho d \rho \\
& =\frac{2 \pi|A|^{2}}{8} \int_{0}^{\infty} e^{-\rho^{2} / \Delta^{2}}|\langle m|(|3\rangle+3|1\rangle+3|-1\rangle+|-3\rangle)|^{2} \rho d \rho \\
& =\left\{\frac{2 \pi|A|^{2}}{8} \int_{0}^{\infty} e^{-\rho^{2} / \Delta^{2}} \rho d \rho\right\}|\langle m|(|3\rangle+3|1\rangle+3|-1\rangle+|-3\rangle)|^{2} \\
& =\left\{\frac{2 \pi|A|^{2}}{8} \int_{0}^{\infty} e^{-\rho^{2} / \Delta^{2}} \rho d \rho\right\}\left|\delta_{m 3}+3 \delta_{m 1}+3 \delta_{m,-1}+\delta_{m,-3}\right|^{2} \\
& =\left\{\frac{2 \pi|A|^{2}}{8} \int_{0}^{\infty} e^{-\rho^{2} / \Delta^{2}} \rho d \rho\right\}\left\{\delta_{m 3}+9 \delta_{m 1}+9 \delta_{m,-1}+\delta_{m,-3}\right\}
\end{aligned}
$$

By inspection, there are four possible values of the quantum number $m: 3,1,-1,-3$. If we define the term in the first bracket as $C$, we get

$$
\mathcal{P}_{L_{z}=3 h}=C
$$

For $m=1$, we get

$$
\mathcal{P}_{L_{z}=h}=9 C
$$

For $m=-1$, we get

$$
\mathcal{P}_{L_{z}=-h}=9 C
$$

For $m=-3$, we get

$$
\mathcal{P}_{L_{z}=-3 h}=C
$$

The four probabilities must sum to one, so we get

$$
\begin{aligned}
& 1=\mathcal{P}_{L_{z}=3 h}+\mathcal{P}_{L_{z}=h}+\mathcal{P}_{L_{z}=-1 h}+\mathcal{P}_{L_{z}=-3 h} \\
&=C\{1+9+9+1\}=20 C \\
& \Rightarrow C=\frac{1}{20} \\
& \Rightarrow \mathcal{P}_{L_{z}=3 h}=\mathcal{P}_{L_{z}=-3 h}=\frac{1}{20} \\
& \Rightarrow \mathcal{P}_{L_{z}=h}+\mathcal{P}_{L_{z}=-1 h}=\frac{9}{20}
\end{aligned}
$$

4. For distinguishable particles, we must count all possible ways of placing the three particles in one of the three states, with no restrictions. The allowed states are

$$
\begin{aligned}
& |a a a\rangle,|b b b\rangle,|c c c\rangle \\
& |a a b\rangle,|a b a\rangle,|b a a\rangle \\
& |a a c\rangle,|a c a\rangle,|c a a\rangle \\
& |b b a\rangle,|b a b\rangle,|a b b\rangle \\
& |b b c\rangle,|b c b\rangle,|c b b\rangle \\
& |c c a\rangle,|c a c\rangle,|a c c\rangle \\
& |c c b\rangle,|c b c\rangle,|b c c\rangle \\
& |a b c\rangle,|a c b\rangle,|c a b\rangle,|c b a\rangle,|b a c\rangle,|b c a\rangle
\end{aligned}
$$

which makes $27=3^{3}$ states.
For bosons, the states must be symmetric under interchange of any two particle labels. Apply the three-particle symmetrizer to the above states to get

$$
\begin{aligned}
|a a a, S\rangle & =\frac{1}{3!}\left(P_{123}+P_{132}+P_{213}+P_{231}+P_{312}+P_{321}\right)|a a a\rangle \\
& =\frac{1}{6}(|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle) \\
& \Rightarrow|a a a, S\rangle=\mid \text { aaa }\rangle
\end{aligned}
$$

The results of this are

$$
\begin{aligned}
& |a a a, S\rangle=|a a a\rangle \\
& |b b b, S\rangle=|b b b\rangle \\
& |c c c, S\rangle=|c c c\rangle \\
& |a a b, S\rangle=\frac{1}{\sqrt{3}}(|a a b\rangle+|a b a\rangle+|b a a\rangle) \\
& \left.\left.|a a c, S\rangle=\frac{1}{\sqrt{3}}| | a a c\right\rangle+|a c a\rangle+|c a a\rangle\right) \\
& \left.\left.|a b b, S\rangle=\frac{1}{\sqrt{3}}| | a b b\right\rangle+|b a b\rangle+|b b a\rangle\right) \\
& \left.\left.|b b c, S\rangle=\frac{1}{\sqrt{3}}| | b b c\right\rangle+|b c b\rangle+|c b b\rangle\right) \\
& \left.\left.|a c c, S\rangle=\frac{1}{\sqrt{3}}| | a c c\right\rangle+|c a c\rangle+|c c a\rangle\right) \\
& \left.\left.|b c c, S\rangle=\frac{1}{\sqrt{3}}| | b c c\right\rangle+|c b c\rangle+|c c b\rangle\right) \\
& \left.\left.|a b c, S\rangle=\frac{1}{\sqrt{6}}| | a b c\right\rangle+|a c b\rangle+|c a b\rangle+|c b a\rangle+|b a c\rangle+|b c a\rangle\right)
\end{aligned}
$$

which makes 10 states.
For fermions, the states must be antisymmetric under interchange of any two particle labels. Apply the three-particle antisymmetrizer to the above states to get

$$
\begin{aligned}
|a a a, A\rangle & =\frac{1}{3!}\left(P_{123}-P_{132}+P_{231}-P_{213}+P_{312}-P_{321}\right)|a a a\rangle \\
& \left.\left.\left.\left.\left.=\frac{1}{6}(\mid \text { aaa }\rangle-\mid \text { aaa }\right\rangle+\mid \text { aaa }\right\rangle-|a a a\rangle+\mid \text { aaa }\right\rangle-\mid \text { aaa }\right\rangle\right) \\
& \Rightarrow|a a a, S\rangle=0
\end{aligned}
$$

For fermions, only one state is not a null vector:

$$
|a b c, A\rangle=\frac{1}{\sqrt{6}}(|a b c\rangle-|a c b\rangle+|b c a\rangle-|b a c\rangle+|c a b\rangle-|c b a\rangle)
$$

which makes 1 state.

