7.3.5 The expectation value of position is

$$
\begin{aligned}
\langle X\rangle & =\langle n| X|n\rangle \\
& =\int_{-\infty}^{\infty} \psi_{n}^{*}(x) x \psi_{n}(x) d x \\
& =\int_{-\infty}^{\infty} x\left|\psi_{n}(x)\right|^{2} d x
\end{aligned}
$$

The function x has odd spatial symmetry and the functions $\left|\psi_{n}(x)\right|^{2}$ have even spatial symmetry (including when $\psi_{n}(x)$ is odd), so the integral is zero.
The expectation value of momentum is

$$
\begin{aligned}
\langle P\rangle & =\langle n| P|n\rangle \\
& =\int_{-\infty}^{\infty} \psi_{n}^{*}(p) p \psi_{n}(p) d p \\
& =\int_{-\infty}^{\infty} p\left|\psi_{n}(p)\right|^{2} d p
\end{aligned}
$$

The function p has odd symmetry in momentum space and the functions $\left|\psi_{n}(p)\right|^{2}$ have even momentum space symmetry (including when $\psi_{n}(p)$ is odd), so the integral is zero.
Because these expectations values are zero, the uncertainties are simplified:

$$
\begin{array}{cc}
\Delta X=\sqrt{\left\langle(X-\langle X\rangle)^{2}\right\rangle}=\sqrt{\left\langle X^{2}\right\rangle-\langle X\rangle^{2}}=\sqrt{\left\langle X^{2}\right\rangle} & \text { since }\langle X\rangle=0 \\
\Delta P=\sqrt{\left\langle(P-\langle P\rangle)^{2}\right\rangle}=\sqrt{\left\langle P^{2}\right\rangle-\langle P\rangle^{2}}=\sqrt{\left\langle P^{2}\right\rangle} & \text { since }\langle P\rangle=0
\end{array}
$$

For the $n=1$ state, the expectation values we need are (use the parametrization $\beta=\sqrt{m \omega / \hbar}$)

$$
\begin{aligned}
\left\langle X^{2}\right\rangle & =\int_{-\infty}^{\infty} \psi_{1}^{*}(x) x^{2} \psi_{1}(x) d x=\int_{-\infty}^{\infty} x^{2}\left|\psi_{1}(x)\right|^{2} d x \\
& =\int_{-\infty}^{\infty} x^{2}\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} x^{2} e^{-\beta^{2} x^{2}} d x=\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} \int_{-\infty}^{\infty} x^{4} e^{-\beta^{2} x^{2}} d x \\
& =\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} \frac{3 \sqrt{\pi}}{4 \beta^{5}}=\frac{3}{2 \beta^{2}}=\frac{3 \hbar}{2 m \omega}
\end{aligned}
$$

and (here we use $\beta=\sqrt{1 / \hbar m \omega}$)

$$
\begin{aligned}
\left\langle P^{2}\right\rangle & =\int_{-\infty}^{\infty} \psi_{1}^{*}(p) p^{2} \psi_{1}(p) d p=\int_{-\infty}^{\infty} p^{2}\left|\psi_{1}(p)\right|^{2} d p \\
& =\int_{-\infty}^{\infty} p^{2}\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} p^{2} e^{-\beta^{2} p^{2}} d p=\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} \int_{-\infty}^{\infty} p^{4} e^{-\beta^{2} p^{2}} d x \\
& =\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} 2 \beta^{2} \frac{3 \sqrt{\pi}}{4 \beta^{5}}=\frac{3}{2 \beta^{2}}=\frac{3 \hbar m \omega}{2}
\end{aligned}
$$

The uncertainty principle is $\Delta x \Delta p \geq \hbar / 2$. For the $n=1$ state we get:

$$
\begin{gathered}
\Delta p=\sqrt{\hbar m \omega\left(n+\frac{1}{2}\right)} \\
\Delta X \Delta P
\end{gathered}=\sqrt{\left\langle X^{2}\right\rangle} \sqrt{\left\langle P^{2}\right\rangle}
$$

So the uncertainty relation is obeyed.
For the ground state we get:

$$
\begin{aligned}
\left\langle X^{2}\right\rangle & =\int_{-\infty}^{\infty} \psi_{0}^{*}(x) x^{2} \psi_{0}(x) d x=\int_{-\infty}^{\infty} x^{2}\left|\psi_{0}(x)\right|^{2} d x \\
& =\int_{-\infty}^{\infty} x^{2}\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} e^{-\beta^{2} x^{2}} d x=\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} x^{2} e^{-\beta^{2} x^{2}} d x \\
& =\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} \frac{\sqrt{\pi}}{2 \beta^{3}}=\frac{1}{2 \beta^{2}}=\frac{\hbar}{2 m \omega}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle P^{2}\right\rangle & =\int_{-\infty}^{\infty} \psi_{0}^{*}(p) p^{2} \psi_{0}(p) d p=\int_{-\infty}^{\infty} p^{2}\left|\psi_{0}(p)\right|^{2} d p \\
& =\int_{-\infty}^{\infty} p^{2}\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} e^{-\beta^{2} p^{2}} d p=\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} p^{2} e^{-\beta^{2} p^{2}} d x \\
& =\left(\frac{\beta^{2}}{\pi}\right)^{\frac{1}{2}} \frac{\sqrt{\pi}}{2 \beta^{3}}=\frac{1}{2 \beta^{2}}=\frac{\hbar m \omega}{2}
\end{aligned}
$$

yielding the uncertainty product:

$$
\begin{aligned}
\Delta X \Delta P & =\sqrt{\left\langle X^{2}\right\rangle} \sqrt{\left\langle P^{2}\right\rangle} \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \sqrt{\frac{\hbar m \omega}{2}}=\frac{1}{2} \hbar \omega
\end{aligned}
$$

which is the minimum uncertainty.
7.3.6 This new potential is "half" of the harmonic oscillator potential. Where the potentials are the same ($x>0$), the solutions should be the same. But for the new potential, the wave functions must be zero for $x<0$, where the potential energy is infinite. For the new wave functions to satisfy the continuity boundary condition, they must be zero at $x=0$. The odd numbered "full" potential wave functions GO TO ZERO at $x=0$ and so will work for this new potential (at least the part of them for $x<0$). So the eigenstates of the new potential are the odd states of the "full" potential:

$$
\psi_{n}(x) ; n=1,3,5,7, \ldots
$$

The energy eigenvalues are

$$
\begin{gathered}
E=\frac{3}{2} \hbar \omega, \frac{7}{2} \hbar \omega, \frac{11}{2} \hbar \omega, \frac{15}{2} \hbar \omega, \ldots \ldots \\
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad \text { for } n=1,3,5,7, \ldots \\
E_{m}=\left(2 m+\frac{3}{2}\right) \hbar \omega \quad \text { for } m=0,1,2,3, \ldots
\end{gathered}
$$

7.4.1 The matrix elements of the ladder operators are given by

$$
\begin{aligned}
\langle m| a|n\rangle & =\langle m| \sqrt{n}|n-1\rangle & \langle m| a^{\dagger}|n\rangle & =\langle m| \sqrt{n+1}|n+1\rangle \\
& =\sqrt{n} \delta_{m, n-1} & & =\sqrt{n+1} \delta_{m, n+1}
\end{aligned}
$$

The matrix elements of X are

$$
\begin{aligned}
\langle m| X|n\rangle & =\langle m| \sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right)|n\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle m|\left(a^{\dagger}+a\right)|n\rangle \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left[\langle m| a^{\dagger}|n\rangle+\langle m| a|n\rangle\right]=\sqrt{\frac{\hbar}{2 m \omega}}[\langle m| \sqrt{n+1}|n+1\rangle+\langle m| \sqrt{n}|n-1\rangle] \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left[\sqrt{n+1} \delta_{m, n+1}+\sqrt{n} \delta_{m, n-1}\right]
\end{aligned}
$$

The matrix elements of P are

$$
\begin{aligned}
\langle m| P|n\rangle & =\langle m| \sqrt{\frac{\hbar m \omega}{2}} i\left(a^{\dagger}-a\right)|n\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\langle m|\left(a^{\dagger}-a\right)|n\rangle \\
& =i \sqrt{\frac{\hbar m \omega}{2}}\left[\langle m| a^{\dagger}|n\rangle-\langle m| a|n\rangle\right]=i \sqrt{\frac{\hbar m \omega}{2}}[\langle m| \sqrt{n+1}|n+1\rangle-\langle m| \sqrt{n}|n-1\rangle] \\
& =i \sqrt{\frac{\hbar m \omega}{2}}\left[\sqrt{n+1} \delta_{m, n+1}-\sqrt{n} \delta_{m, n-1}\right]
\end{aligned}
$$

Both agree with Exercise 7.3.4.
7.4.2 Calculate using the operators a and a^{\dagger}.

$$
\begin{aligned}
\langle X\rangle & =\langle n| X|n\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle n| a^{\dagger}+a|n\rangle \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left[\langle n| a^{\dagger}|n\rangle+\langle n| a|n\rangle\right]=\sqrt{\frac{\hbar}{2 m \omega}}[\langle n| \sqrt{n+1}|n+1\rangle+\langle n| \sqrt{n}|n-1\rangle] \\
& =\sqrt{\frac{\hbar}{2 m \omega}}[\sqrt{n+1}\langle n \mid n+1\rangle+\sqrt{n}\langle n \mid n-1\rangle]=0 \text { since }\langle n \mid m\rangle=\delta_{n m} \\
\langle P\rangle & =\langle n| P|n\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\langle n| a^{\dagger}-a|n\rangle \\
& =i \sqrt{\frac{\hbar m \omega}{2}}\left[\langle n| a^{\dagger}|n\rangle-\langle n| a|n\rangle\right]=i \sqrt{\frac{\hbar m \omega}{2}}[\langle n| \sqrt{n+1}|n+1\rangle-\langle n| \sqrt{n}|n-1\rangle] \\
& =i \sqrt{\frac{\hbar m \omega}{2}}[\sqrt{n+1}\langle n \mid n+1\rangle-\sqrt{n}\langle n \mid n-1\rangle]=0 \text { since }\langle n \mid m\rangle=\delta_{n m}
\end{aligned}
$$

Note also that $\langle n| a^{2}|n\rangle=0$ and $\langle n|\left(a^{\dagger}\right)^{2}|n\rangle=0$ in a similar manner, so that

$$
\begin{aligned}
\left\langle X^{2}\right\rangle & =\langle n| X^{2}|n\rangle=\frac{\hbar}{2 m \omega}\langle n|\left(a^{\dagger}+a\right)^{2}|n\rangle=\frac{\hbar}{2 m \omega}\langle n|\left(a^{\dagger}\right)^{2}+a^{\dagger} a+a a^{\dagger}+a^{2}|n\rangle \\
& =\frac{\hbar}{2 m \omega}\langle n| a^{\dagger} a+a a^{\dagger}|n\rangle=\frac{\hbar}{2 m \omega}\langle n| \sqrt{n} \sqrt{n}+\sqrt{n+1} \sqrt{n+1}|n\rangle \\
& =\frac{\hbar}{2 m \omega}(2 n+1)=\frac{\hbar}{m \omega}\left(n+\frac{1}{2}\right) \\
\left\langle P^{2}\right\rangle & =\langle n| P^{2}|n\rangle=-\frac{\hbar m \omega}{2}\langle n|\left(a^{\dagger}-a\right)^{2}|n\rangle=-\frac{\hbar m \omega}{2}\langle n|\left(a^{\dagger}\right)^{2}-a^{\dagger} a-a a^{\dagger}+a^{2}|n\rangle \\
& =\frac{\hbar m \omega}{2}\langle n| a^{\dagger} a+a a^{\dagger}|n\rangle=\frac{\hbar}{2 m \omega}\langle n| \sqrt{n} \sqrt{n}+\sqrt{n+1} \sqrt{n+1}|n\rangle \\
& =\frac{\hbar m \omega}{2}(2 n+1)=\hbar m \omega\left(n+\frac{1}{2}\right)
\end{aligned}
$$

The uncertainty principle is $\Delta X \Delta P \geq \hbar / 2$ where

$$
\begin{gathered}
\Delta X=\sqrt{\left\langle(X-\langle X\rangle)^{2}\right\rangle}=\sqrt{\left\langle X^{2}\right\rangle-\langle X\rangle^{2}}=\sqrt{\left\langle X^{2}\right\rangle} \text { since }\langle X\rangle=0 \\
\Delta P=\sqrt{\left\langle(P-\langle P\rangle)^{2}\right\rangle}=\sqrt{\left\langle P^{2}\right\rangle-\langle P\rangle^{2}}=\sqrt{\left\langle P^{2}\right\rangle} \text { since }\langle P\rangle=0 \\
\Delta X=\sqrt{\frac{\hbar}{m \omega}\left(n+\frac{1}{2}\right)} \\
\Delta P=\sqrt{\hbar m \omega\left(n+\frac{1}{2}\right)}
\end{gathered}
$$

$$
\Delta X \Delta P=\sqrt{\frac{\hbar}{m \omega}\left(n+\frac{1}{2}\right)} \sqrt{\hbar m \omega\left(n+\frac{1}{2}\right)}=\left(n+\frac{1}{2}\right) \hbar \geq \frac{\hbar}{2}
$$

So the uncertainty relation is obeyed.
7.4.5 The initial state is

$$
|\psi(t=0)\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

1) Time evolution:

$$
\begin{aligned}
|\psi(t)\rangle & =\frac{1}{\sqrt{2}}\left(e^{-i E_{0} t / \hbar}|0\rangle+e^{-i E_{t} t / \hbar}|1\rangle\right) \\
& =e^{-i \omega t / 2} \frac{1}{\sqrt{2}}\left(|0\rangle+e^{-i \omega t}|1\rangle\right)
\end{aligned}
$$

2) Expectation values:

$$
\begin{aligned}
\langle X(t)\rangle & =\langle\psi(t)| X|\psi(t)\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle\psi(t)| a^{\dagger}+a|\psi(t)\rangle \\
& =\sqrt{\frac{\hbar}{2 m \omega}} e^{+i \omega t / 2} \frac{1}{\sqrt{2}}\left(\langle 0|+e^{+i \omega t}\langle 1|\right)\left(a^{\dagger}+a\right) e^{-i \omega t / 2} \frac{1}{\sqrt{2}}\left(|0\rangle+e^{-i \omega t}|1\rangle\right) \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2}\left[e^{-i \omega t}\langle 0| a|1\rangle+e^{+i \omega t}\langle 1| a^{\dagger}|0\rangle\right] \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2}\left[e^{-i \omega t} \sqrt{1}+e^{+i \omega t} \sqrt{1}\right]=\sqrt{\frac{\hbar}{2 m \omega}} \cos \omega t \\
& \Rightarrow\langle X(0)\rangle=\sqrt{\frac{\hbar}{2 m \omega}}
\end{aligned}
$$

Momentum expectation value:

$$
\begin{aligned}
\langle P(t)\rangle & =\langle\psi(t)| P|\psi(t)\rangle=i \sqrt{\frac{m \omega \hbar}{2}}\langle\psi(t)| a^{\dagger}-a|\psi(t)\rangle \\
& =i \sqrt{\frac{m \omega \hbar}{2}} e^{+i \omega t / 2} \frac{1}{\sqrt{2}}\left(\langle 0|+e^{+i \omega t}\langle 1|\right)\left(a^{\dagger}-a\right) e^{-i \omega t / 2} \frac{1}{\sqrt{2}}\left(|0\rangle+e^{-i \omega t}|1\rangle\right) \\
& =i \sqrt{\frac{m \omega \hbar}{2}} \frac{1}{2}\left[-e^{-i \omega t}\langle 0| a|1\rangle+e^{+i \omega t}\langle 1| a^{\dagger}|0\rangle\right] \\
& =i \sqrt{\frac{m \omega \hbar}{2}} \frac{1}{2}\left[-e^{-i \omega t} \sqrt{1}+e^{+i \omega t} \sqrt{1}\right]=-\sqrt{\frac{m \omega \hbar}{2}} \sin \omega t \\
& \Rightarrow\langle P(0)\rangle=0
\end{aligned}
$$

3) Ehrenfest's theorem is

$$
\begin{aligned}
\frac{d}{d t}\langle X\rangle & =-\frac{i}{\hbar}\langle[X, H]\rangle \\
\frac{d}{d t}\langle P\rangle & =-\frac{i}{\hbar}\langle[P, H]\rangle
\end{aligned}
$$

For the harmonic oscillator, the commutators are

$$
\begin{aligned}
{[X, H] } & =\left[\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right), \hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)\right] \\
& =\hbar \omega \sqrt{\frac{\hbar}{2 m \omega}}\left[\left(a^{\dagger}+a\right), a^{\dagger} a\right]=\hbar \omega \sqrt{\frac{\hbar}{2 m \omega}}\left\{\left[a^{\dagger}, a^{\dagger} a\right]+\left[a, a^{\dagger} a\right]\right\} \\
& =\hbar \omega \sqrt{\frac{\hbar}{2 m \omega}}\left\{a^{\dagger} a^{\dagger} a-a^{\dagger} a a^{\dagger}+a a^{\dagger} a-a^{\dagger} a a\right\} \\
& =\hbar \omega \sqrt{\frac{\hbar}{2 m \omega}}\left\{a^{\dagger} a^{\dagger} a-a^{\dagger}\left(a^{\dagger} a+1\right)+\left(a^{\dagger} a+1\right) a-a^{\dagger} a a\right\} \\
& =\hbar \omega \sqrt{\frac{\hbar}{2 m \omega}}\left\{a-a^{\dagger}\right\} \\
& =i \frac{\hbar}{m} P
\end{aligned}
$$

and

$$
\begin{aligned}
{[P, H] } & =\left[i \sqrt{\frac{\hbar m \omega}{2}}\left(a^{\dagger}-a\right), \hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)\right] \\
& =i \hbar \omega \sqrt{\frac{\hbar m \omega}{2}}\left[\left(a^{\dagger}-a\right), a^{\dagger} a\right]=i \hbar \omega \sqrt{\frac{\hbar m \omega}{2}}\left\{\left[a^{\dagger}, a^{\dagger} a\right]-\left[a, a^{\dagger} a\right]\right\} \\
& =i \hbar \omega \sqrt{\frac{\hbar m \omega}{2}}\left\{a^{\dagger} a^{\dagger} a-a^{\dagger} a a^{\dagger}-a a^{\dagger} a+a^{\dagger} a a\right\} \\
& =i \hbar \omega \sqrt{\frac{\hbar m \omega}{2}}\left\{a^{\dagger} a^{\dagger} a-a^{\dagger}\left(a^{\dagger} a+1\right)-\left(a^{\dagger} a+1\right) a+a^{\dagger} a a\right\} \\
& =-i \hbar \omega \sqrt{\frac{\hbar m \omega}{2}}\left\{a+a^{\dagger}\right\} \\
& =-i \hbar m \omega^{2} X
\end{aligned}
$$

These give

$$
\begin{aligned}
\frac{d}{d t}\langle X\rangle & =-\frac{i}{\hbar}\left\langle i \frac{\hbar}{m} P\right\rangle=\frac{\langle P\rangle}{m} \\
\frac{d}{d t}\langle P\rangle & =-\frac{i}{\hbar}\left\langle-i \hbar m \omega^{2} X\right\rangle=-m \omega^{2}\langle X\rangle
\end{aligned}
$$

Plug one equation into the other to get

$$
\frac{d^{2}}{d t^{2}}\langle X\rangle=-\omega^{2}\langle X\rangle
$$

The solution to this differential equation is

$$
\langle X(t)\rangle=A \cos \omega t+B \sin \omega t
$$

which also gives

$$
\langle P(t)\rangle=m\langle\dot{X}(t)\rangle=-m \omega A \sin \omega t+m \omega B \cos \omega t
$$

Using the $t=0$ expectation values from (2) requires $B=0$ and $A=\sqrt{\frac{\hbar}{2 m \omega}}$. Hence we get

$$
\begin{aligned}
& \langle X(t)\rangle=\sqrt{\frac{\hbar}{2 m \omega}} \cos \omega t \\
& \langle P(t)\rangle=-\sqrt{\frac{m \omega \hbar}{2}} \sin \omega t
\end{aligned}
$$

which agree with the results from (2).
7.4.6 The expectation values we need are

$$
\begin{aligned}
& \langle a(t)\rangle=\langle\psi(t)| a|\psi(t)\rangle \\
& \left\langle a^{\dagger}(t)\right\rangle=\langle\psi(t)| a^{\dagger}|\psi(t)\rangle
\end{aligned}
$$

A generic time-dependent wave function is

$$
|\psi(t)\rangle=\sum_{n=0}^{\infty} c_{n} e^{-i E_{n} t / \hbar}|n\rangle=e^{-i \omega t / 2} \sum_{n=0}^{\infty} c_{n} e^{-i n \omega t}|n\rangle
$$

The expectation value of a is

$$
\begin{aligned}
\langle a(t)\rangle & =\langle\psi(t)| a|\psi(t)\rangle \\
& =e^{+i \omega t / 2} \sum_{m=0}^{\infty} c_{m}^{*} e^{+i m \omega t}\langle m| a e^{-i \omega t / 2} \sum_{n=0}^{\infty} c_{n} e^{-i n \omega t}|n\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t}\langle m| a|n\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t}\langle m| \sqrt{n}|n-1\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t} \sqrt{n} \delta_{m, n-1} \\
& =e^{-i \omega t} \sum_{m=0}^{\infty} c_{m}^{*} c_{m+1} \sqrt{m+1}
\end{aligned}
$$

For $t=0$, we get

$$
\langle a(0)\rangle=\sum_{m=0}^{\infty} c_{m}^{*} c_{m+1} \sqrt{m+1}
$$

Hence we get

$$
\langle a(t)\rangle=e^{-i \omega t}\langle a(0)\rangle
$$

Likewise

$$
\begin{aligned}
\left\langle a^{\dagger}(t)\right\rangle & =\langle\psi(t)| a^{\dagger}|\psi(t)\rangle \\
& =e^{+i \omega t / 2} \sum_{m=0}^{\infty} c_{m}^{*} e^{+i m \omega t}\langle m| a^{\dagger} e^{-i \omega t / 2} \sum_{n=0}^{\infty} c_{n} e^{-i n \omega t}|n\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t}\langle m| a^{\dagger}|n\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t}\langle m| \sqrt{n+1}|n+1\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m}^{*} c_{n} e^{+i(m-n) \omega t} \sqrt{n+1} \delta_{m, n+1} \\
& =e^{+i \omega t} \sum_{m=1}^{\infty} c_{m}^{*} c_{m-1} \sqrt{m} \\
& =e^{+i \omega t}\left\langle a^{\dagger}(0)\right\rangle
\end{aligned}
$$

