
PH 651: Fall 2015 Oregon State University, Department of Physics 
Solution to Homework 4 Page 1 of 10 

Solution for the exclusive use of students in PH 651 in Fall 2015 – DO NOT DISTRIBUTE 

5.2.6 
The finite square well potential energy is  

 V x( ) =
V0
0
V0

⎧

⎨
⎪

⎩
⎪

x < −a
−a ≤ x ≤ a
x > a

 

The energy eigenvalue equation is 

 

 

− 
2

2m
d 2

dx2
+ 0

⎛
⎝⎜

⎞
⎠⎟
ϕE x( ) = EϕE x( )    inside box

− 
2

2m
d 2

dx2
+V0

⎛
⎝⎜

⎞
⎠⎟
ϕE x( ) = EϕE x( )    outside box

  

In the infinite well problem, we found it useful to use the wave vector k 

 
 
k = 2mE

2
. 

In this case, the wave vector outside the well is imaginary, so we define the decay constant q (κ  
in the text) 

 
 
q = 2m

2
V0 − E( ) . 

Note that k and q are related by 

 
 
k2 + q2 = 2mV0

2
. 

For bound states, 0 < E <V0 , and therefore both k and q are real.  We use these two constants to 
rewrite the energy eigenvalue equation: 

 

d 2ϕE x( )
dx2

= −k2ϕE x( ) inside box

d 2ϕE x( )
dx2

= q2ϕE x( ) outside box
 

The energy eigenvalue equation inside the box is identical to the one we solved for the infinite 
well potential.  The differential equation outside the box is similar except the constant is positive 
instead of negative, giving real exponential solutions rather than complex exponentials.  Thus the 
solution outside the box is 

 ϕE x( ) = Aeqx + Be−qx . 
This solution in the classically forbidden region is exponentially decaying, or growing, with a 
decay length, or growth length, of 1/q. 

The energy eigenstate must be constructed by connecting solutions in the three regions.  
We write the general solution as 

 ϕE x( ) =
Aeqx + Be−qx ,  for x < −a

C sin kx + Dcoskx,  for − a < x < a

Feqx +Ge−qx ,  for x > a

⎧

⎨
⎪⎪

⎩
⎪
⎪
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The normalization condition (i.e. boundary condition at infinity) requires that B = F = 0.  In the 
infinite well, we found that the solutions could be classified as having even or odd spatial 
symmetry.  Let's do the same here.  The even solutions are (G = A) 

 ϕeven x( ) =
Aeqx

Dcos kx( )
Ae−qx

⎧

⎨
⎪

⎩
⎪

x < −a
−a ≤ x ≤ a
x > a

 

The odd solutions are (G = -A) 

 ϕodd x( ) =
Aeqx

C sin kx( )
−Ae−qx

⎧

⎨
⎪

⎩
⎪

x < −a
−a ≤ x ≤ a
x > a

 

Let's first do the even solutions.  The boundary conditions at the right side of the well (x 
= a) give 

 
ϕeven a( ) :Dcos ka( ) = Ae−qa

dϕeven x( )
dx x=a

:−kDsin ka( ) = −qAe−qa
 

The boundary conditions at the left side of the well (x = -a) yield the same equations, which must 
be true because of the symmetry.  The two equations above have three unknowns: the amplitudes 
A and D and the energy E, which is contained in the parameters k and q.  The normalization 
condition provides the third equation required to solve for all three unknowns.  We find the 
energy condition rather simply by dividing the two equations, which eliminates the amplitudes 
and yields 

 k tan ka( ) = q  
Now let's do the odd solutions.  The boundary conditions at the right side of the well (x = a) give 

 
ϕeven a( ) :C sin ka( ) = −Ae−qa

dϕeven x( )
dx x=a

: kC cos ka( ) = qAe−qa  

Dividing the equations eliminates the normalization constants to yield 

 −k cot ka( ) = q  

A graphical solution for the allowed energies using these two transcendental equations is 
most useful here.  There are many ways of doing this.  One way involves defining some new 
dimensionless parameters: 

 

 

α = ka = 2mEa2

2

β = qa =
2m V0 − E( )a2

2

 

These definitions lead to the convenient expression 
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α 2 + β 2 = 2mV0a

2

2
≡ R2  

This allows us to write the transcendental equations in this form: 

 
α tan α( ) = β    →   α tan α( ) = R2 −α 2

−α cot α( ) = β    →   −α cot α( ) = R2 −α 2
 

In each of these new transcendental equations, the left side is a modified trig function, while the 
right side is a circle with radius R.  These functions are plotted below as a function of the 
parameter α .  The intersection points of these curves determine the allowed values of α  and 
hence the allowed energies En.  Because the constant R is the radius of the circle, there are a 
limited number of allowed energies, and that number grows as R gets larger.  The large circle 
below leads to four bound states, while the smaller circle leads to only one bound state.  Note 
that there is always at least one bound state because the circle always intersects at least the first 
tangent curve (even state).  To get at least one odd solution, we need the circle to be big enough 
that it intersects the first cotangent curve.  Hence we require  

 

 

R > π
2

⇒ 2mV0a
2

2
> π
2

⇒ V0 >
π 22

8ma2

 

Note that the equality implied in the text is not allowed.  A state with R = π 2  would lead to an 
odd state with α = π 2  and β = 0 , yielding E =V0  and q = 0 .  However, that would imply a 
wave function outside the well that was constant ( eqx = 1) and therefore not normalizable.  
Hence, the state with E =V0  is not a physically allowed state.  Thus, the way to interpret the 
text's question is:  What is the energy of the ground state when the well is deep enough to just 
barely not allow an odd state.  Now we use the equality R = π 2  and the ground state energy is 
given by the solution to the transcendental equation 

 α tan α( ) = π 2

4
−α 2  

which yields 
 α = 0.934  

giving an energy 

 
 
Egnd state =

2k2

2m
= 

2α 2

2ma2
= 0.872 

2

2ma2
. 
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5.4.2  (a) For a delta function potential, we must reconsider the continuity equation for the 
derivative of the wave function.  Above we found that 

 
 

dϕE x( )
dx ε

−
dϕE x( )
dx −ε

= 2m
2
lim
ε→0

V x( )ϕE x( )dx
−ε

ε

∫  

Start by solving the energy eigenvalue equation: 

 
 
− 

2

2m
d 2

dx2
− aV0δ x( )⎛

⎝⎜
⎞
⎠⎟
ϕE x( ) = EϕE x( )  

Outside of the potential well, V = 0 , and E > 0 so the solutions are complex exponentials.  
Assume a solution of form 

 ϕE x( ) = Aeikx + Be− ikx ,      x < 0

Ceikx ,     x > 0

⎧
⎨
⎪

⎩⎪
 

with  k = 2mE 2  and we have assumed that there are particles incident from the left, but not 
from the right.  The boundary condition on the continuity of the wave function at x = 0 gives 

 A + B = C  
The boundary condition on the wave function derivative from above gives 

 

 

dϕE x( )
dx ε

−
dϕE x( )
dx −ε

= 2m
2
lim
ε→0

V x( )ϕE x( )dx
−ε

ε

∫

lim
ε→0

ikCeikε − ikAe− ikε + ikBeikε( ) = −aV0
2m
2
lim
ε→0

δ x( )ϕE x( )dx
−ε

ε

∫
ik C − A + B( ) = −aV0

2m
2

ϕE 0( )

ik C − A + B( ) = −aV0
2m
2

C

 

Solve these two equations for the ratios: 

 

 

C
A
= 1

1− i maV0
k2

B
A
=

i maV0
k2

1− i maV0
k2

 

Now take the squares to get the transmission probability: 

 

 

T =
C 2

A 2 =
1

1+ maV0
k2

⎛
⎝⎜

⎞
⎠⎟
2  
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and the reflection probability 

 

 

R =
B 2

A 2 =

maV0
k2

⎛
⎝⎜

⎞
⎠⎟
2

1+ maV0
k2

⎛
⎝⎜

⎞
⎠⎟
2  

Note that T + R = 1  as required by conservation of particle number or probability. 
b) 

-a a
x

V

V0
E < V0

 
A square potential energy barrier is shown above.  The potential energy is described as 

 V x( ) =
0
V0
0

⎧

⎨
⎪

⎩
⎪

x < −a
−a ≤ x ≤ a
x > a

 

If the energy E of the incident particle beam is less than the well height V0, then the region 
−a ≤ x ≤ a  is classically forbidden.  As in the previous well problems, there are separate 
eigenvalue equations in the different regions: 

 

 

− 
2

2m
d 2

dx2
+V0

⎛
⎝⎜

⎞
⎠⎟
ϕE x( ) = EϕE x( );   x < a

− 
2

2m
d 2

dx2
+ 0

⎛
⎝⎜

⎞
⎠⎟
ϕE x( ) = EϕE x( );   x > a

 

The energy E is less than the potential barrier height V0 , so the interior solutions must be real 
exponentials and the exterior solutions must be complex exponentials.  It is useful to define a 
wave vector k outside the well and a decay constant q inside the well: 

 

 

k = 2mE
2

q =
2m V0 − E( )
2

 

Use these two constants to rewrite the energy eigenvalue equations as 
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d 2ϕE x( )
dx2

= q2ϕE x( );   x < a

d 2ϕE x( )
dx2

= −k2ϕE x( );   x > a
 

The general solutions to these equations are 

 ϕE x( ) =
Aeikx + Be− ikx ,  for x < -a

Ceqx + De−qx ,  for -a < x < a

Feikx ,  for x > a

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where we have assumed that there are particles incident from the left, but not from the right.  It is 
important that the wave function in the classically forbidden region contains both the 
exponentially decreasing and the exponentially growing terms.  The growing term cannot vanish 
as it did in the case where the classically forbidden region extended to infinity.  The boundary 
condition equations for continuity of the wave function and of the derivative of the wave 
function are 

 

ϕ −a( ) :Ae− ika + Beika = Ce−qa + Deqa

dϕ x( )
dx x=−a

: ikAe− ika − ikBeika = qCe−qa − qDeqa

ϕ a( ) :Ceqa + De−qa = Feika

dϕ x( )
dx x=a

:qCeqa − qDe−qa = ikFeika

 

Solve the last two equations for C and D by addition and subtraction of the equations: 

 
Ceqa + De−qa = Feika

Ceqa − De−qa = ik q( )Feika       ⇒     
2Ceqa = Feika 1+ ik q( )
2De−qa = Feika 1− ik q( )

 

Similarly rearrange (add and subtract) the first two equations: 

 
2Ae− ika = Ce−qa 1+ q ik( ) + Deqa 1− q ik( )
2Beika = Ce−qa 1− q ik( ) + Deqa 1+ q ik( )

 

and substitute from above to eliminate C and D: 

 
4Ae−2ika = Fe−2qa 1+ ik q( ) 1+ q ik( ) + Fe2qa 1− ik q( ) 1− q ik( )
4B = Fe−2qa 1+ ik q( ) 1− q ik( ) + Fe2qa 1− ik q( ) 1+ q ik( )

 

Simplify 

 
4Ae− i2ka = F 4cosh2qa − ik q + q ik( )2sinh2qa⎡⎣ ⎤⎦
4B = F − ik q − q ik( )2sinh2qa⎡⎣ ⎤⎦

 

and solve for the ratios B/A and F/A 



PH 651: Fall 2015 Oregon State University, Department of Physics 
Solution to Homework 4 Page 8 of 10 

Solution for the exclusive use of students in PH 651 in Fall 2015 – DO NOT DISTRIBUTE 

 

F
A
= e− i2ka

cosh2qa + i q
2 − k2

2kq
sinh2qa

B
A
=

ie− i2ka q
2 + k2

2kq
sinh2qa

cosh2qa + i q
2 − k2

2kq
sinh2qa

, 

Now take the squares to get the transmission probability: 

 

T =
F 2

A 2 =
1

cosh2 2qa( ) + q2 − k2( )2
4k2q2

sinh2 2qa( )

= 1

1+
q2 + k2( )2
4k2q2

sinh2 2qa( )
= 1

1+ V0
2

4E V0 − E( ) sinh
2 2qa( )

 

and the reflection probability 

 

R =
B 2

A 2 =

q2 + k2( )2
4k2q2

sinh2 2qa( )

cosh2 2qa( ) + q2 − k2( )2
4k2q2

sinh2 2qa( )

=

q2 + k2( )2
4k2q2

sinh2 2qa( )

1+
q2 + k2( )2
4k2q2

sinh2 2qa( )
=

V0
2

4E V0 − E( ) sinh
2 2qa( )

1+ V0
2

4E V0 − E( ) sinh
2 2qa( )

 

Note that T + R = 1  as required by conservation of particle number or probability. 
 
 
 
3.  a) The momentum probability density is 
  P p( ) = pψ

2
= ψ p( ) 2  

For a particle in the energy eigenstate ψ n x( ) , the momentum wave function is 

 
ψ n p( ) = p n = p x x n dx =

−∞

∞

∫
1
2π

e− i px ψ n x( )dx
−∞

∞

∫  
Assuming that the state has an even number n, the spatial wave function ψ n x( )  is 

ψ n x( ) = 2
L
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟  

which yields 
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ψ n p( ) = 1
2π

e− i px ψ n x( )dx
−∞

∞

∫ = 1
2π

e− i px  2
L
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟ dx−L 2

L 2

∫

= 1
πL

e− i px  einπ x L − e− inπ x L

2i
⎛
⎝⎜

⎞
⎠⎟
dx

−L 2

L 2

∫

= 1
2i πL

e− i p −nπ L( )x − e− i p −nπ L( )x( )dx−L 2

L 2

∫

= 1
2i πL

e− i p −nπ L( )L 2 − e− i p −nπ L( )L 2

−i p  − nπ L( ) − e
− i p +nπ L( )L 2 − ei p +nπ L( )L 2

−i p  + nπ L( )
⎡

⎣
⎢

⎤

⎦
⎥

= 1
i πL

sin pL 2 − nπ 2( )
p − nπ L( )  −

sin pL 2 + nπ 2( )
p + nπ L( ) 

⎡

⎣
⎢

⎤

⎦
⎥

=
 −1( )n 2
i πL

sin pL 2( )
p − pn( ) −

sin pL 2( )
p + pn( )

⎡

⎣
⎢

⎤

⎦
⎥

=
 −1( )n 2
i πL

2pn
p2 − pn

2( ) sin pL 2( )

 

where we have defined  pn ≡ nπ L  .  The momentum probability density is 

 

  

Pn p( ) = p n 2 = ψ n p( ) 2

= 4
πL

pn
2

p2 − pn
2( )2
sin2 p L

2
⎛
⎝⎜

⎞
⎠⎟

= 4πn
23

L3
1

p2 − pn
2( )2
sin2 p L

2
⎛
⎝⎜

⎞
⎠⎟

 

b) Plot for n = 10: 
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c) The momentum probability density is peaked at the values p = ± pn .  If we apply the de 
Broglie equation to the standing waves that we expect in an infinite square well, we find the 
momentum: 

 

 

p = h
λ

L = n λ
2

⇒ λn =
2L
n

⇒ pn = h
2L
n

⎛
⎝⎜

⎞
⎠⎟
= n h

2L
= nπ

L
 

We get peaks at positive and negative values because the standing wave comprises travelling 
waves moving in both directions. 
 
 


