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4.2.1  The operators are (I have included   , but OK if not there) 

 

 

Lx 

2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Ly 

2

0 −i 0
i 0 −i
0 i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Lz  
1 0 0
0 0 0
0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

(1)  Possible values of Lz  must be eigenvalues.  Lz  is already diagonal, so eigenvalues can be 
read off by inspection: 

 Lz = , 0, −    (or 1, 0, -1) 

(2)  Initial state is 

 

ψ = Lz =  
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 .  Find expectation values: 

 

 

Lx = ψ Lx ψ = 1 0 0( ) 2
0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 

2
1 0 0( )

0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 0  

 

 

Lx
2 = ψ Lx

2 ψ = 1 0 0( ) 2
0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 
2

2 1 0 0( )
0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 

2

2 1 0 0( )
1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 

2

2

 

The uncertainty is 

 
 
ΔLx = Lx

2 − Lx
2 = 2

2
− 0 = 

2
 

 
(3)  For Lx  the diagonalization yields the eigenvalues 

 

 

Lx 

2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−λ 
2 0


2 −λ 

2

0 
2 −λ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0   ⇒  −λ λ 2 − 22( )− 
2 −λ 

2( ) = 0 

λ λ 2 − 2( ) = 0   ⇒  λ = 1,0,−1

 

and the eigenvectors 
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2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b = a 2
a + c = b 2
b = c 2

a 2 + b 2 + c 2 = 1   ⇒    b 2 1
2 +1+ 1

2( ) = 1   ⇒   b = 1
2 ,a =

1
2 ,c = 1

2

1 x =
1
2 1 + 1

2 0 + 1
2 −1

 

 

 


2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 0

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b = 0
a + c = 0
b = 0

a 2 + b 2 + c 2 = 1   ⇒    a 2 1+1( ) = 1   ⇒   a = 1
2 ,b = 0,c = − 1

2

0 x =
1
2 1 − 1

2 −1

 

 

 


2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= −1

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b = −a 2
a + c = −b 2
b = −c 2

a 2 + b 2 + c 2 = 1   ⇒    b 2 1
2 +1+ 1

2( ) = 1   ⇒   b = − 1
2 ,a =

1
2 ,c = 1

2

−1 x =
1
2 1 − 1

2 0 + 1
2 −1

 

(4)  Initial state is 

 

ψ = Lz = − 
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 .  Possible results of Lx  measurement are eigenvalues 

of Lx :  Lx = , 0, −    (or 1, 0, -1).  The probabilities are 

 
 
P1x = x 1ψ

2
= 1

2 1 + 1
2 0 + 1

2 −1( ) −1( ) 2 = 1
2
2 = 1

4  

 
 
P0x = x 0ψ in

2
= 1

2 1 −
1
2 −1( ) −1( ) 2 = − 1

2

2
= 1

2  

 
 
P−1x = x −1ψ

2
= 1

2 1 − 1
2 0 + 1

2 −1( ) −1( ) 2 = 1
2
2 = 1

4  

The three probabilities add to unity, as they must.  

(5)  Initial state is 

 

ψ in 

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 .  Possible results of Lz
2  measurement are eigenvalues of Lz

2 .  

Lz
2  is already diagonal: 
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Lz
2  2

1 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 so eigenvalues can be read off by inspection: 

 Lz
2 = 2, 0, 2   (or 1, 0, 1) 

Note the degeneracy:  the states 1  and −1  produce the same eigenvalue  2 .  Hence we must 
use the projection operator to find the state after a measurement that yields  2 : 

 
 

ψ out =
P
2
ψ in

ψ in P2 ψ in

 

For this case, we get 

 

 

ψ out =
P1 + P−1( )ψ in

ψ in P1 + P−1( )ψ in

=
1 1 + −1 −1( )ψ in

ψ in 1 1 + −1 −1( )ψ in

1 1 + −1 −1( )ψ in 
1 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1
2

0
1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ψ in 1 1 + −1 −1( )ψ in = 1
2

1
2

1
2( )

1
2

0
1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 3
4

ψ out 
2
3

1
2

0
1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1
3

0
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

The probability is given by the expectation value of the projection, which is included in the 
above calculation 

  
P
Lz
2=2

= ψ in P1 + P−1( )ψ in = ψ in 1 1 + −1 −1( )ψ in = 3
4

 

If we now measure Lz , then the possible results are the eigenvalues of Lz :  Lz = , 0, −    (or 1, 
0, -1).   The probabilities are 
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P1 = 1ψ out

2
= 1 0 0( )

1
3

0
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

= 1
3

P0 = 0ψ out

2
= 0 1 0( )

1
3

0
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

= 0

P−1 = −1ψ out

2
= 0 0 1( )

1
3

0
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

= 2
3

 

(6)  If we know that  

 

P1 = 1ψ out

2
= 1
4

P0 = 0ψ out

2
= 1
2

P−1 = −1ψ out

2
= 1
4

 

Then we can solve these to find that  

1ψ out = 1
2 e

iδ1

0ψ out = 1
2 e

iδ2

−1ψ out = 1
2 e

iδ 3

 

noting that answers can be complex.  Thus the initial state must be 

ψ in = 1
2 e

iδ1 1 + 1
2 e

iδ2 0 + 1
2 e

iδ 3 −1  

An overall phase is not physically measurable, but relative phases are.  For example, if we 
calculate 

 

P1x = x 1ψ in

2
= 1

2 1 + 1
2 0 + 1

2 −1( ) 1
2 e

iδ1 1 + 1
2 e

iδ2 0 + 1
2 e

iδ 3 −1( ) 2

= 1
4 e

iδ1 + 1
2 e

iδ2 + 1
4 e

iδ 3( ) 2 = eiδ1 1
4 + 1

2 e
i δ2−δ1( ) + 1

4 e
i δ 3−δ1( )( ) 2

= 1
4 + 1

2 e
− i δ2−δ1( ) + 1

4 e
− i δ 3−δ1( )( ) 1

4 + 1
2 e

i δ2−δ1( ) + 1
4 e

i δ 3−δ1( )( )
= 1
16 + 1

4 + 1
16 + 1

4 cos δ 2 −δ1( ) + 1
8 cos δ 3 −δ1( ) + 1

4 cos δ 3 −δ 2( )

 

we can rewrite this in terms of two phases: 



PH 651: Fall 2015 Oregon State University, Department of Physics 
Solution to Homework 2 Page 5 of 7 

Solution for the exclusive use of students in PH 651 in Fall 2015 – DO NOT DISTRIBUTE 

 

φ1 = δ 2 −δ1
φ2 = δ 3 −δ1
P1x = 1

16 + 1
4 + 1

16 + 1
4 cosφ1 + 1

8 cosφ2 + 1
4 cos φ2 −φ1( )

 

so we can safely set one phase to zero and write 

ψ in = 1
2 1 + 1

2 e
iφ1 0 + 1

2 e
iφ2 −1  

 
 
 
 
2.23  (a) The commutator is 

 

 

A,B[ ] = AB − BA 
a1 0 0
0 a2 0
0 0 a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b1 0 0
0 0 b2
0 b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

b1 0 0
0 0 b2
0 b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a1 0 0
0 a2 0
0 0 a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



a1b1 0 0
0 0 a2b2
0 a3b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

a1b1 0 0
0 0 a3b2
0 a2b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



0 0 0
0 0 b2 a2 − a3( )
0 b2 a3 − a2( ) 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
≠ 0

 

so they do not commute. 
(b)  A is already diagonal, so the eigenvalues and eigenvectors are obtained by inspection.  The 
eigenvalues are 
 a1,a2 ,a3  

and the eigenvectors are 

 

 

a1 = 1 
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,    a2 = 2 

0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,    a3 = 3 

0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

For B, diagonalization yields the eigenvalues 

 

b1 − λ 0 0
0 −λ b2
0 b2 −λ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0   ⇒   b1 − λ( ) λ2 − b2

2( ) = 0 

 ⇒  λ = b1,b2 ,−b2
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and the eigenvectors 

 

 

b1 0 0
0 0 b2
0 b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= b1

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b1u = b1u
b2w = b1v
b2v = b1w

   ⇒   w = v = 0

u 2 + v 2 + w 2 = 1   ⇒    u 2 = 1   ⇒   u = 1,v = 0,w = 0   ⇒    b1 = 1 
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 

 

b1 0 0
0 0 b2
0 b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= b2

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b1u = b2u
b2w = b2v
b2v = b2w

   ⇒   u = 0,  w = v

b2 b2 = 1  ⇒    v 2 + w 2 = 1  ⇒   u = 0,v = 1
2 ,w = 1

2   ⇒    b2 = 1
2 2 + 3( ) 

0
1
2

1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 

b1 0 0
0 0 b2
0 b2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= −b2

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

b1u = −b2u
b2w = −b2v
b2v = −b2w

   ⇒   u = 0,  w = −v

−b2 −b2 = 1  ⇒   v 2 + w 2 = 1  ⇒  u = 0,v = 1
2 ,w = − 1

2   ⇒   −b2 = 1
2 2 + 3( ) 

0
1
2

− 1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

c)  If B is measured, the possible results are the allowed eigenvalues b1,b2 ,−b2 .  If the initial state 
is ψ i = 2 , then the probabilities are 

 

 

Pb1 = b1 ψ i
2
= 1 2 2 = 0

Pb2 = b2 ψ i
2
= 1

2 2 + 3( ) 2 2
= 1

2

P−b2 = −b2 ψ i
2
= 1

2 2 − 3( ) 2 2
= 1

2

 

If A is then measured, the possible results are the allowed eigenvalues a1,a2 ,a3 .  If b2 was the 
first result, then the new state is b2  and when A is measured the subsequent probabilities are 
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Pa1 = a1 b2
2
= 1 1

2 2 + 3( ) 2 = 0
Pa2 = a2 b2

2
= 2 1

2 2 + 3( ) 2 = 1
2

Pa3 = a3 b2
2
= 3 1

2 2 + 3( ) 2 = 1
2

 

If -b2 was the first result, then the new state is −b2  and when A is measured the subsequent 
probabilities are 

 

 

Pa1 = a1 −b2
2
= 1 1

2 2 − 3( ) 2 = 0
Pa2 = a2 −b2

2
= 2 1

2 2 − 3( ) 2 = 1
2

Pa3 = a3 −b2
2
= 3 1

2 2 − 3( ) 2 = 1
2

 

d)  If two operators do not commute, then the corresponding observables cannot be measured 
simultaneously.  Part (a) tells us that the operators A and B not commute.  Part (c) tells us that 
measurement B "disturbs" the measurement of A so the two measurements are not compatible 
(cannot be made simultaneously).  So even though we started in state ψ i = 2 , which is an 
eigenstate of A (meaning we know that the system has A = a2), the measurement of B puts the 
system into a state for which A is now not well defined, as evidenced by the subsequent A 
measurement. 
 


