4.2.1 The operators are (I have included \hbar, but OK if not there)

$$
L_{x} \doteq \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad L_{y} \doteq \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) \quad L_{z} \doteq \hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(1) Possible values of L_{z} must be eigenvalues. L_{z} is already diagonal, so eigenvalues can be read off by inspection:

$$
L_{z}=\hbar, 0,-\hbar \quad(\text { or } 1,0,-1)
$$

(2) Initial state is $|\psi\rangle=\left|L_{z}=\hbar\right\rangle \doteq\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Find expectation values:

$$
\begin{gathered}
\left\langle L_{x}\right\rangle=\langle\psi| L_{x}|\psi\rangle=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0 \\
\left\langle L_{x}^{2}\right\rangle=\langle\psi| L_{x}^{2}|\psi\rangle=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) \\
=\frac{\hbar^{2}}{2}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\frac{\hbar^{2}}{2}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\frac{\hbar^{2}}{2}
\end{gathered}
$$

The uncertainty is

$$
\Delta L_{x}=\sqrt{\left\langle L_{x}^{2}\right\rangle-\left\langle L_{x}\right\rangle^{2}}=\sqrt{\frac{\hbar^{2}}{2}-0}=\frac{\hbar}{\sqrt{2}}
$$

(3) For L_{x} the diagonalization yields the eigenvalues

$$
\begin{aligned}
& L_{x} \doteq \frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
-\lambda & \frac{\hbar}{\sqrt{2}} & 0 \\
\frac{\hbar}{\sqrt{2}} & -\lambda & \frac{\hbar}{\sqrt{2}} \\
0 & \frac{\hbar}{\sqrt{2}} & -\lambda
\end{array}\right)=0 \Rightarrow-\lambda\left(\lambda^{2}-\frac{\hbar^{2}}{2}\right)-\frac{\hbar}{\sqrt{2}}\left(-\lambda \frac{\hbar}{\sqrt{2}}\right)=0 \\
& \lambda\left(\lambda^{2}-\hbar^{2}\right)=0 \Rightarrow \lambda=1 \hbar, 0,-1 \hbar
\end{aligned}
$$

and the eigenvectors

$$
\begin{aligned}
& \frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=1 \hbar\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Rightarrow \begin{array}{c}
b=a \sqrt{2} \\
a+c=b \sqrt{2} \\
b=c \sqrt{2}
\end{array} \\
& |a|^{2}+|b|^{2}+|c|^{2}=1 \Rightarrow|b|^{2}\left(\frac{1}{2}+1+\frac{1}{2}\right)=1 \Rightarrow b=\frac{1}{\sqrt{2}}, a=\frac{1}{2}, c=\frac{1}{2} \\
& |1\rangle_{x}=\frac{1}{2}|1\rangle+\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{2}|-1\rangle \\
& \frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \hbar\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right) \Rightarrow \begin{array}{c}
b=0 \\
a+c=0 \\
b=0
\end{array} \\
& |a|^{2}+|b|^{2}+|c|^{2}=1 \Rightarrow|a|^{2}(1+1)=1 \Rightarrow \begin{array}{c}
a=\frac{1}{\sqrt{2}}, b=0, c=-\frac{1}{\sqrt{2}} \\
|0\rangle_{x}=\frac{1}{\sqrt{2}}|1\rangle-\frac{1}{\sqrt{2}}|-1\rangle \\
\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=-1 \hbar\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right) \Rightarrow \begin{array}{c}
a+c=-b \sqrt{2} \\
b=-c \sqrt{2}
\end{array} \\
|a|^{2}+|b|^{2}+|c|^{2}=1 \Rightarrow|b|^{2}\left(\frac{1}{2}+1+\frac{1}{2}\right)=1 \Rightarrow \begin{array}{c}
b=-\frac{1}{\sqrt{2}}, a=\frac{1}{2}, c=\frac{1}{2}
\end{array} \\
|-1\rangle_{x}=\frac{1}{2}|1\rangle-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{2}|-1\rangle
\end{array}
\end{aligned}
$$

(4) Initial state is $|\psi\rangle=\left|L_{z}=-\hbar\right\rangle \doteq\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Possible results of L_{x} measurement are eigenvalues of $L_{x}: L_{x}=\hbar, 0,-\hbar$ (or $1,0,-1$). The probabilities are

$$
\begin{gathered}
\mathcal{P}_{1 x}=\left.\left.\right|_{x}\langle 1 \mid \psi\rangle\right|^{2}=\left\lvert\,\left.\left(\frac{1}{2}\langle 1|+\frac{1}{\sqrt{2}}\langle 0|+\frac{1}{2}\langle-1|\right)(|-1\rangle)\right|^{2}=\left|\frac{1}{2}\right|^{2}=\frac{1}{4}\right. \\
\mathcal{P}_{0 x}=\left.\left.\right|_{x}\left\langle 0 \mid \psi_{i n}\right\rangle\right|^{2}=\left\lvert\,\left.\left(\frac{1}{\sqrt{2}}\langle 1|-\frac{1}{\sqrt{2}}\langle-1|\right)(|-1\rangle)\right|^{2}=\left|-\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}\right. \\
\mathcal{P}_{-1 x}=\left|{ }_{x}\langle-1 \mid \psi\rangle\right|^{2}=\left\lvert\,\left.\left(\frac{1}{2}\langle 1|-\frac{1}{\sqrt{2}}\langle 0|+\frac{1}{2}\langle-1|\right)(|-1\rangle)\right|^{2}=\left|\frac{1}{2}\right|^{2}=\frac{1}{4}\right.
\end{gathered}
$$

The three probabilities add to unity, as they must.
(5) Initial state is $\left|\psi_{\text {in }}\right\rangle \doteq\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{\sqrt{2}}\end{array}\right)$. Possible results of L_{z}^{2} measurement are eigenvalues of L_{z}^{2}. L_{z}^{2} is already diagonal:

$$
L_{z}^{2} \doteq \hbar^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

so eigenvalues can be read off by inspection:

$$
L_{z}^{2}=\hbar^{2}, 0, \hbar^{2} \quad(\text { or } 1,0,1)
$$

Note the degeneracy: the states $|1\rangle$ and $|-1\rangle$ produce the same eigenvalue \hbar^{2}. Hence we must use the projection operator to find the state after a measurement that yields \hbar^{2} :

$$
\left|\psi_{\text {out }}\right\rangle=\frac{P_{\hbar^{2}}\left|\psi_{\text {in }}\right\rangle}{\sqrt{\left\langle\psi_{\text {in }}\right| P_{\hbar^{2}}\left|\psi_{\text {in }}\right\rangle}}
$$

For this case, we get

$$
\begin{aligned}
& \left|\psi_{\text {out }}\right\rangle=\frac{\left(P_{1}+P_{-1}\right)\left|\psi_{\text {in }}\right\rangle}{\sqrt{\left\langle\psi_{\text {in }}\right|\left(P_{1}+P_{-1}\right)\left|\psi_{\text {in }}\right\rangle}}=\frac{(|1\rangle\langle 1|+|-1\rangle\langle-1|)\left|\psi_{\text {in }}\right\rangle}{\sqrt{\left\langle\psi_{\text {in }}\right|(|1\rangle\langle 1|+|-1\rangle\langle-1|)\left|\psi_{\text {in }}\right\rangle}} \\
& (|1\rangle\langle 1|+|-1\rangle\langle-1|)\left|\psi_{\text {in }}\right\rangle \doteq\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \left\langle\psi_{\text {in }}\right|(|1\rangle\langle 1|+|-1\rangle\langle-1|)\left|\psi_{\text {in }}\right\rangle=\left(\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)=\frac{3}{4} \\
& \left|\psi_{\text {out }}\right\rangle \doteq \frac{2}{\sqrt{3}}\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
0 \\
\frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

The probability is given by the expectation value of the projection, which is included in the above calculation

$$
\mathcal{P}_{L_{i}^{2}=\hbar}=\left\langle\psi_{i n}\right|\left(P_{1}+P_{-1}\right)\left|\psi_{i n}\right\rangle=\left\langle\psi_{\text {in }}\right|(|1\rangle\langle 1|+|-1\rangle\langle-1|)\left|\psi_{\text {in }}\right\rangle=\frac{3}{4}
$$

If we now measure L_{z}, then the possible results are the eigenvalues of $L_{z}: L_{z}=\hbar, 0,-\hbar$ (or 1 , $0,-1)$. The probabilities are

$$
\begin{aligned}
& \mathcal{P}_{1}=\left|\left\langle 1 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\left|\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
0 \\
\frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right)\right|^{2}=\frac{1}{3} \\
& \mathcal{P}_{0}=\left|\left\langle 0 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\left|\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
0 \\
\frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right)\right|=0 \\
& \mathcal{P}_{-1}=\left|\left\langle-1 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\left.\left|\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
0 \\
\frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right)\right|\right|^{2}=\frac{2}{3}
\end{aligned}
$$

(6) If we know that

$$
\begin{aligned}
& \mathcal{P}_{1}=\left|\left\langle 1 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\frac{1}{4} \\
& \mathcal{P}_{0}=\left|\left\langle 0 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\frac{1}{2} \\
& \mathcal{P}_{-1}=\left|\left\langle-1 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\frac{1}{4}
\end{aligned}
$$

Then we can solve these to find that

$$
\begin{aligned}
& \left\langle 1 \mid \psi_{\text {out }}\right\rangle=\frac{1}{2} e^{i \delta_{1}} \\
& \left\langle 0 \mid \psi_{\text {out }}\right\rangle=\frac{1}{\sqrt{2}} e^{i \delta_{2}} \\
& \left\langle-1 \mid \psi_{\text {out }}\right\rangle=\frac{1}{2} e^{i \delta_{3}}
\end{aligned}
$$

noting that answers can be complex. Thus the initial state must be

$$
\left|\psi_{i n}\right\rangle=\frac{1}{2} e^{i \delta_{1}}|1\rangle+\frac{1}{\sqrt{2}} e^{i \delta_{2}}|0\rangle+\frac{1}{2} e^{i \delta_{3}}|-1\rangle
$$

An overall phase is not physically measurable, but relative phases are. For example, if we calculate

$$
\begin{aligned}
\mathcal{P}_{1 x} & =\left|{ }_{x}\left\langle 1 \mid \psi_{i n}\right\rangle\right|^{2}=\left|\left(\frac{1}{2}\langle 1|+\frac{1}{\sqrt{2}}\langle 0|+\frac{1}{2}\langle-1|\right)\left(\frac{1}{2} e^{i \delta_{1}}|1\rangle+\frac{1}{\sqrt{2}} e^{i \delta_{2}}|0\rangle+\frac{1}{2} e^{i \delta_{3}}|-1\rangle\right)\right|^{2} \\
& =\left|\left(\frac{1}{4} e^{i \delta_{1}}+\frac{1}{2} e^{i \delta_{2}}+\frac{1}{4} e^{i \delta_{3}}\right)\right|^{2}=\left|e^{i \delta_{1}}\left(\frac{1}{4}+\frac{1}{2} e^{i\left(\delta_{2}-\delta_{1}\right)}+\frac{1}{4} e^{i\left(\delta_{3}-\delta_{1}\right)}\right)\right|^{2} \\
& =\left(\frac{1}{4}+\frac{1}{2} e^{-i\left(\delta_{2}-\delta_{1}\right)}+\frac{1}{4} e^{-i\left(\delta_{3}-\delta_{1}\right)}\right)\left(\frac{1}{4}+\frac{1}{2} e^{i\left(\delta_{2}-\delta_{1}\right)}+\frac{1}{4} e^{i\left(\delta_{3}-\delta_{1}\right)}\right) \\
& =\frac{1}{16}+\frac{1}{4}+\frac{1}{16}+\frac{1}{4} \cos \left(\delta_{2}-\delta_{1}\right)+\frac{1}{8} \cos \left(\delta_{3}-\delta_{1}\right)+\frac{1}{4} \cos \left(\delta_{3}-\delta_{2}\right)
\end{aligned}
$$

we can rewrite this in terms of two phases:

$$
\begin{aligned}
\phi_{1} & =\delta_{2}-\delta_{1} \\
\phi_{2} & =\delta_{3}-\delta_{1} \\
\mathcal{P}_{1 x} & =\frac{1}{16}+\frac{1}{4}+\frac{1}{16}+\frac{1}{4} \cos \phi_{1}+\frac{1}{8} \cos \phi_{2}+\frac{1}{4} \cos \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

so we can safely set one phase to zero and write

$$
\left|\psi_{i n}\right\rangle=\frac{1}{2}|1\rangle+\frac{1}{\sqrt{2}} e^{i \phi_{1}}|0\rangle+\frac{1}{2} e^{i \phi_{2}}|-1\rangle
$$

2.23 (a) The commutator is

$$
\begin{aligned}
{[A, B] } & =A B-B A \doteq\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right)\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)-\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right) \\
& \doteq\left(\begin{array}{ccc}
a_{1} b_{1} & 0 & 0 \\
0 & 0 & a_{2} b_{2} \\
0 & a_{3} b_{2} & 0
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} b_{1} & 0 & 0 \\
0 & 0 & a_{3} b_{2} \\
0 & a_{2} b_{2} & 0
\end{array}\right) \\
& \doteq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & b_{2}\left(a_{2}-a_{3}\right) \\
0 & b_{2}\left(a_{3}-a_{2}\right) & 0
\end{array}\right) \neq 0
\end{aligned}
$$

so they do not commute.
(b) A is already diagonal, so the eigenvalues and eigenvectors are obtained by inspection. The eigenvalues are

$$
a_{1}, a_{2}, a_{3}
$$

and the eigenvectors are

$$
\left|a_{1}\right\rangle=|1\rangle \doteq\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left|a_{2}\right\rangle=|2\rangle \doteq\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left|a_{3}\right\rangle=|3\rangle \doteq\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

For B, diagonalization yields the eigenvalues

$$
\begin{aligned}
& \left(\begin{array}{ccc}
b_{1}-\lambda & 0 & 0 \\
0 & -\lambda & b_{2} \\
0 & b_{2} & -\lambda
\end{array}\right)=0 \Rightarrow\left(b_{1}-\lambda\right)\left(\lambda^{2}-b_{2}^{2}\right)=0 \\
& \Rightarrow \lambda=b_{1}, b_{2},-b_{2}
\end{aligned}
$$

and the eigenvectors

$$
\begin{aligned}
& \left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=b_{1}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \Rightarrow \begin{array}{l}
b_{1} u=b_{1} u \\
b_{2} w=b_{1} v \\
b_{2} v=b_{1} w
\end{array} \quad \Rightarrow w=v=0 \\
& |u|^{2}+|v|^{2}+|w|^{2}=1 \Rightarrow|u|^{2}=1 \Rightarrow u=1, v=0, w=0 \quad \Rightarrow\left|b_{1}\right\rangle=|1\rangle \doteq\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=b_{2}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \Rightarrow \begin{array}{l}
b_{1} u=b_{2} u \\
b_{2} w=b_{2} v \\
b_{2} v=b_{2} w
\end{array} \quad \Rightarrow u=0, w=v \\
& \left\langle b_{2} \mid b_{2}\right\rangle=1 \Rightarrow|v|^{2}+|w|^{2}=1 \Rightarrow u=0, v=\frac{1}{\sqrt{2}}, w=\frac{1}{\sqrt{2}} \Rightarrow\left|b_{2}\right\rangle=\frac{1}{\sqrt{2}}(|2\rangle+|3\rangle) \doteq\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=-b_{2}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \Rightarrow \begin{array}{l}
b_{1} u=-b_{2} u \\
b_{2} w=-b_{2} v \\
b_{2} v=-b_{2} w
\end{array} \quad \Rightarrow u=0, w=-v \\
& \left\langle-b_{2} \mid-b_{2}\right\rangle=1 \Rightarrow|v|^{2}+|w|^{2}=1 \Rightarrow u=0, v=\frac{1}{\sqrt{2}}, w=-\frac{1}{\sqrt{2}} \Rightarrow\left|-b_{2}\right\rangle=\frac{1}{\sqrt{2}}(|2\rangle+|3\rangle) \doteq\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

c) If B is measured, the possible results are the allowed eigenvalues $b_{1}, b_{2},-b_{2}$. If the initial state is $\left|\psi_{i}\right\rangle=|2\rangle$, then the probabilities are

$$
\begin{aligned}
& \mathcal{P}_{b_{1}}=\left|\left\langle b_{1} \mid \psi_{i}\right\rangle\right|^{2}=|\langle 1 \mid 2\rangle|^{2}=0 \\
& \mathcal{P}_{b_{2}}=\left|\left\langle b_{2} \mid \psi_{i}\right\rangle\right|^{2}=\left\lvert\,\left.\frac{1}{\sqrt{2}}(\langle 2|+\langle 3|)|2\rangle\right|^{2}=\frac{1}{2}\right. \\
& \mathcal{P}_{-b_{2}}=\left|\left\langle-b_{2} \mid \psi_{i}\right\rangle\right|^{2}=\left\lvert\,\left.\frac{1}{\sqrt{2}}(\langle 2|-\langle 3|)|2\rangle\right|^{2}=\frac{1}{2}\right.
\end{aligned}
$$

If A is then measured, the possible results are the allowed eigenvalues a_{1}, a_{2}, a_{3}. If b_{2} was the first result, then the new state is $\left|b_{2}\right\rangle$ and when A is measured the subsequent probabilities are

$$
\begin{aligned}
& \mathcal{P}_{a_{1}}=\left|\left\langle a_{1} \mid b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 1| \frac{1}{\sqrt{2}}(|2\rangle+|3\rangle)\right|^{2}=0\right. \\
& \mathcal{P}_{a_{2}}=\left|\left\langle a_{2} \mid b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 2| \frac{1}{\sqrt{2}}(|2\rangle+|3\rangle)\right|^{2}=\frac{1}{2}\right. \\
& \mathcal{P}_{a_{3}}=\left|\left\langle a_{3} \mid b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 3| \frac{1}{\sqrt{2}}(|2\rangle+|3\rangle)\right|^{2}=\frac{1}{2}\right.
\end{aligned}
$$

If $-b_{2}$ was the first result, then the new state is $\left|-b_{2}\right\rangle$ and when A is measured the subsequent probabilities are

$$
\begin{aligned}
& \mathcal{P}_{a_{1}}=\left|\left\langle a_{1} \mid-b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 1| \frac{1}{\sqrt{2}}(|2\rangle-|3\rangle)\right|^{2}=0\right. \\
& \mathcal{P}_{a_{2}}=\left|\left\langle a_{2} \mid-b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 2| \frac{1}{\sqrt{2}}(|2\rangle-|3\rangle)\right|^{2}=\frac{1}{2}\right. \\
& \mathcal{P}_{a_{3}}=\left|\left\langle a_{3} \mid-b_{2}\right\rangle\right|^{2}=\left\lvert\,\left.\langle 3| \frac{1}{\sqrt{2}}(|2\rangle-|3\rangle)\right|^{2}=\frac{1}{2}\right.
\end{aligned}
$$

d) If two operators do not commute, then the corresponding observables cannot be measured simultaneously. Part (a) tells us that the operators A and B not commute. Part (c) tells us that measurement B "disturbs" the measurement of A so the two measurements are not compatible (cannot be made simultaneously). So even though we started in state $\left|\psi_{i}\right\rangle=|2\rangle$, which is an eigenstate of A (meaning we know that the system has $A=a_{2}$), the measurement of B puts the system into a state for which A is now not well defined, as evidenced by the subsequent A measurement.

