7 October 2015

Homework 2

Due Wednesday 21 October

- 1. 4.2.1, p. 129 from Shankar
- 2. 2.23, p. 66 from McIntyre:

Consider a three dimensional ket space. In the basis defined by three orthogonal kets $|1\rangle$, $|2\rangle$, and $|3\rangle$, the operators A and B are represented by

a_1	0	0		b_1	0	0	
0			$B \doteq$	0	0	b_2	,
0	0	a_3		0	b_2	0)

where all the quantities are real.

- a) Do the operators A and B commute?
- b) Find the eigenvalues and normalized eigenvectors of both operators.
- c) Assume the system is initially in the state $|2\rangle$. Then the observable corresponding to the operator *B* is measured. What are the possible results of this measurement and the probabilities of each result? After this measurement, the observable corresponding to the operator *A* is measured. What are the possible results of this measurement and the probabilities of each result?
- d) How are questions (a) and (c) above related?