Homework 2
Due Wednesday 21 October

1. 4.2.1, p. 129 from Shankar
2. 2.23, p. 66 from McIntyre:

Consider a three dimensional ket space. In the basis defined by three orthogonal kets $|1\rangle,|2\rangle$, and $|3\rangle$, the operators $A$ and $B$ are represented by

$$
A \doteq\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right) \quad B \doteq\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & 0 & b_{2} \\
0 & b_{2} & 0
\end{array}\right)
$$

where all the quantities are real.
a) Do the operators $A$ and $B$ commute?
b) Find the eigenvalues and normalized eigenvectors of both operators.
c) Assume the system is initially in the state $|2\rangle$. Then the observable corresponding to the operator $B$ is measured. What are the possible results of this measurement and the probabilities of each result? After this measurement, the observable corresponding to the operator $A$ is measured. What are the possible results of this measurement and the probabilities of each result?
d) How are questions (a) and (c) above related?

