THE FOUCAULT PENDULUM

Marion and Thornton gives the standard treatment of the Foucault pendulum in Example 10.5 on pp. 398-401. However, there is an easier way to get the same result. The basic idea is to separate the problem into 2 parts: an ordinary pendulum influenced by gravity, and a Coriolis-like effect acting on the direction of motion of the pendulum.
Let $\overrightarrow{\boldsymbol{q}}$ denote the initial direction of motion of the pendulum. We are not concerned with the periodic nature of the motion, but only with the change in $\overrightarrow{\boldsymbol{q}}$ from one period to the next. With respect to an observer on the Earth we have

$$
\overrightarrow{\boldsymbol{q}}=X \hat{\boldsymbol{\phi}}-Y \hat{\boldsymbol{\theta}}
$$

where the signs are chosen such that X measures distance to the East and Y to the North. Consider now the derivative of $\overrightarrow{\boldsymbol{q}}$:

$$
\begin{aligned}
\dot{\overrightarrow{\boldsymbol{q}}} & =(\dot{X} \hat{\boldsymbol{\phi}}-\dot{Y} \hat{\boldsymbol{\theta}})+(X \dot{\hat{\boldsymbol{\phi}}}-Y \dot{\hat{\boldsymbol{\theta}}}) \\
& =(\dot{X} \hat{\boldsymbol{\phi}}-\dot{Y} \hat{\boldsymbol{\theta}})-\Omega \cos \theta(X \hat{\boldsymbol{\theta}}+Y \hat{\boldsymbol{\phi}})-\Omega \sin \theta X \hat{\boldsymbol{r}}
\end{aligned}
$$

Now the last term involves vertical motion, which we will ignore - gravity ensures that the pendulum moves (nearly) orthogonal to $\hat{\boldsymbol{r}}$. But gravity is the only force involved, so that the remaining terms should vanish. Equivalently, the only change in $\overrightarrow{\boldsymbol{q}}$ should be in the $\overrightarrow{\boldsymbol{r}}$ direction with respect to a fixed observer. We therefore obtain the equations

$$
\begin{aligned}
\dot{X}-\Omega \cos \theta Y & =0 \\
\dot{Y}+\Omega \cos \theta X & =0
\end{aligned}
$$

These equations can be easily solved by introducing the variable

$$
Z=X+i Y
$$

which results in

$$
\dot{Z}+i \Omega \cos \theta Z=0
$$

This equation has the solution

$$
Z(t)=Z(0) e^{-i(\Omega \cos \theta) t}
$$

or equivalently

$$
\binom{X(t)}{Y(t)}=\left(\begin{array}{rr}
\cos (\psi t) & \sin (\psi t) \\
-\sin (\psi t) & \cos (\psi t)
\end{array}\right)\binom{X(0)}{Y(0)}
$$

where $\psi=\Omega \cos \theta= \pm \Omega \sin \lambda$, and where the sign depends on the hemisphere. In the Northern Hemisphere, the initial direction of the pendulum therefore rotates clockwise by an angle ψt.

