SOLUTION TO EXERCISE 1

A model of the water molecule $\mathrm{H}_{2} \mathrm{O}$ is shown in MT Figure 9-B.

a. Where is the center of mass? $X=? Y=? Z=?$ let $\theta=52^{\circ}$

$$
\begin{gathered}
m_{O}=16 \mathrm{amu}, m_{H}=1 \mathrm{amu} \\
x_{H}=a \cos \theta, x_{O}=0, X=\frac{m_{H} x_{H}+m_{H} x_{H}+m_{O} x_{O}}{2 m_{H}+m_{O}}=\frac{2}{18} a \cos \theta \\
y_{H}= \pm a \sin \theta, y_{O}=0, Y=\frac{m_{H} y_{H}-m_{H} y_{H}+m_{O} y_{O}}{2 m_{H}+m_{O}}=0
\end{gathered}
$$

$z_{H}=0, z O=0, Z=0 . Z$ and Y can be seen directly from symmetry
b. What is the moment of inertia about the x axis? $I_{\mathrm{X}}=$?

$$
I_{x}=2 m_{H y} H^{2}+2 m_{H} z H^{2}+m_{O y} O^{2}+m O Z O^{2}=2 \mathrm{amu} a^{2} \sin ^{2} \theta
$$

c. What is the moment of inertia about the y axis? $I_{\mathrm{y}}=$?

$$
I_{x}=2 m_{H} x_{H}^{2}+2 m_{H} z H^{2}+m_{O} x O^{2}+m_{O} z_{O}^{2}=2 \mathrm{amu} a^{2} \cos ^{2} \theta
$$

d. What is the moment of inertia about the z axis? $I_{\mathrm{Z}}=$?
$I_{x}=2 m_{H} x_{H}^{2}+2 m_{H y H^{2}+m O} x_{O^{2}}+m_{O y} O^{2}=2 \mathrm{amu} a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2 \mathrm{amu} a^{2}$
e. What is the moment of inertia about an axis that goes through the hydrogen atoms? $I^{\prime}=? x^{\prime}=x-x_{H}, y^{\prime}=y, z^{\prime}=z$

$$
I^{\prime}=m O x^{\prime} O^{2}+0+0+0+0+0=(8 \mathrm{amu})(a \cos \theta)^{2}
$$

