solutions to ROTATING TENSORS worksheet by Philip J. Siemens

TOPICS
 page

A. Applying the previous rotation - algebra 2

A. APPLYING THE PREVIOUS ROTATION - ALGEBRA

The CageLab apparatus consists of a hollow rectangular cage with two square faces.
Its length in the x and y directions is L, and the length in the z direction is $h . h$ is shorter than L.
The walls of the cage have a uniform surface mass density, and its total mass is M.
There is a clay sphere of mass m and radius r fastened to the corner of the cage at the origin.

radius r

In the worksheet Rotating Vectors we found a rotation which keeps the sphere fixed and rotates the cage so that its long diagonal is along the z axis.

First, there was a rotation about the z axis by an angle ϕ, such that

$$
\sin \phi=-\sqrt{ } 2 / 2 \quad \cos \phi=\sqrt{ } 2 / 2
$$

Next, there was a rotation about the x axis by an angle θ such that
$\sin \theta=\frac{-\sqrt{ } 2 L}{\sqrt{2 L^{2}+h^{2}}} \quad \cos \theta=\frac{h}{\sqrt{2 L^{2}+h^{2}}}$

These values can be substituted in the general expression for the rotation matrix ,
$R_{\psi} R_{\theta} R_{\phi}=\left(\begin{array}{lll}\cos \psi \cos \phi & \cos \psi \sin \phi & \sin \psi \sin \theta \\ -\cos \theta \sin \phi \sin \psi & +\cos \theta \cos \phi \sin \psi & \\ -\sin \psi \cos \phi & -\sin \psi \sin \phi & \cos \psi \sin \theta \\ -\cos \theta \sin \phi \cos \psi & +\cos \theta \cos \phi \cos \psi & \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right)$

The result still contains
the last angle ψ as an undetermined parameter: $\quad R(\psi)=$
in terms of L, h, etc.,
we found

$$
\left(\begin{array}{lll}
\frac{\cos \psi}{\sqrt{2}}+\frac{h \sin \psi}{\sqrt{2\left(2 L^{2}+h^{2}\right)}} & \frac{-\cos \psi}{\sqrt{2}}+\frac{h \sin \psi}{\sqrt{2\left(2 L^{2}+h^{2}\right)}} & \frac{-\sqrt{ } 2 L \sin \psi}{\sqrt{2 L^{2}+h^{2}}} \\
\frac{-\sin \psi}{\sqrt{2}+\frac{h \cos \psi}{\sqrt{2\left(2 L^{2}+h^{2}\right)}}} \frac{\frac{\sin \psi}{\sqrt{2}}+\frac{h \cos \psi}{\sqrt{2\left(2 L^{2}+h^{2}\right)}}}{\frac{-\sqrt{ } 2 L \cos \psi}{\sqrt{2 L^{2}+h^{2}}}} \\
\frac{L}{\sqrt{2 L^{2}+h^{2}}} & \frac{L}{\sqrt{2 L^{2}+h^{2}}} & \frac{h}{\sqrt{2 L^{2}+h^{2}}}
\end{array}\right)
$$

We can apply the same rotation to the apparatus in its center of mass.

The result will also have the ball on the z axis, but the center of mass will be at the origin.

The inertial tensor for the combined ball plus cage, in their joint center of mass, was found in the Worksheet Translating Tensors :

$$
\begin{aligned}
& I_{\text {tot }}=I_{\text {ball }}+I_{\text {cage }}= \\
& =\frac{m}{4}\left(\begin{array}{lll}
L^{2}+h^{2} & -L^{2} & -L h \\
-L^{2} & L^{2}+h^{2} & -L h \\
-L h & -L h & 2 L^{2}
\end{array}\right)+ \\
& \\
& \frac{M}{12\left(L^{2}+2 L h\right)}\left(\begin{array}{llll}
L^{4}+4 L^{3} h & 0 & 0 \\
+3 L^{2} h^{2}+2 L h^{3} & & L^{4}+4 L^{3} h & 0 \\
0 & +3 L^{2} h+2 L h^{3} & \\
0 & 0 & 0 L^{4}+8 L^{3} h
\end{array}\right)
\end{aligned}
$$

The rotated inertial tensor $R I^{\prime} R^{\mathrm{T}}$ is calculated in two steps.
First, multiply I^{\prime} times R^{T} to compute $I^{\prime} R^{\mathrm{T}}$: (expressed in terms of L, h, etc.)
$\frac{M}{12\left(L^{2}+2 L h\right)} \frac{1}{\sqrt{2\left(2 L^{2}+h^{2}\right)}}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
\sqrt{2 L^{2}+h^{2}}\left(L^{4}+4 L^{3} h\right. & h\left(L^{4}+4 L^{3} h\right. & \sqrt{ } 2 L\left(L^{4}+4 L^{3} h\right. \\
\left.+3 L^{2} h^{2}+2 L h^{3}\right) & \left.+3 L^{2} h^{2}+2 L h^{3}\right) & \left.+3 L^{2} h^{2}+2 L h^{3}\right) \\
-\sqrt{2 L^{2}+h^{2}}\left(L^{4}+4 L^{3} h\right. & h\left(L^{4}+4 L^{3} h\right. & \sqrt{ } 2 L\left(L^{4}+4 L^{3} h\right. \\
\left.+3 L^{2} h^{2}+2 L h^{3}\right) & \left.+3 L^{2} h^{2}+2 L h^{3}\right) & \left.+3 L^{2} h^{2}+2 L h^{3}\right) \\
0 & -4 L^{4}(L+4 h) & 2 \sqrt{ } 2 L^{3} h(L+4 h)
\end{array}\right) \\
& +\frac{m}{4 \sqrt{2\left(2 L^{2}+h^{2}\right)}\left(\begin{array}{lll}
\left(2 L^{2}+h^{2}\right) \sqrt{2 L^{2}+h^{2}} & 2 L^{2} h+h^{3} & 0 \\
-\left(2 L^{2}+h^{2}\right) \sqrt{2 L^{2}+h^{2}} & 2 L^{2} h+h^{3} & 0 \\
0 & -2 L\left(2 L^{2}+h^{2}\right) & 0
\end{array}\right)}
\end{aligned}
$$

Next, multiply on the left by R to get $R I^{\prime} R^{\mathrm{T}}$: (expressed in terms of L, h, etc.)

$$
\frac{M}{12\left(L^{2}+2 L h\right)} \frac{1}{2 L^{2}+h^{2}}
$$

$\left(\begin{array}{lll}\left(2 L^{2}+h^{2}\right) & 0 & 0 \\ \left(L^{4}+4 L^{3} h\right. & & \\ \left.+3 L^{2} h^{2}+2 L h^{3}\right) & 4 L^{6}+16 L^{5} h+L^{4} h^{2} & \sqrt{ } 2\left(-L^{5} h-4 L^{4} h^{2}\right. \\ 0 & +4 L^{3} h^{3}+3 L^{2} h^{4}+2 L h^{5} & \left.+3 L^{3} h^{3}+2 L^{2} h^{4}\right) \\ 0 & \sqrt{ } 2\left(-L^{5} h-4 L^{4} h^{2}\right. & 2 L^{6}+8 L^{5} h \\ 0 & \left.+3 L^{3} h^{3}+2 L^{2} h^{4}\right) & +4 L^{4} h^{2}-4 L^{3} h^{3}\end{array}\right)$
$\quad+\frac{m}{4} \frac{1}{2\left(2 L^{2}+h^{2}\right)}\left(\begin{array}{lll}\left(2 L^{2}+h^{2}\right)^{2} & 0 & 0 \\ 0 & 2\left(2 L^{2}+h^{2}\right)^{2} & 0 \\ 0 & 0 & 0\end{array}\right)$

Remarks on this result: ___ the x axis is a principal axis: $I x y=0=I x z$

