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A.  SAMPLE CALCULATION: RECTANGULAR BRICK

A rectangular brick lies in the first
octant of a Cartesian coordinate system
with one corner at the origin.

Its lengths in the x, y, and z  directions
are A, B, and C respectively.

The brick has a uniform density ρ .     x

y

z

C

A

B

A.1.  Center of mass.  ρ(x,y,z) ≡ mass per unit volume

The center of mass of a mass distribution ρ(r) is defined as

R  ≡ 
1
M ∫d3r  ρ(r) r .

The total mass M  is the norm of the density distribution,

M  =  ∫d3r  ρ(r) .

The components of R are the normalized first moments of the density distribution
ρ(r),

  X  =  
1
M  ∫dz   ∫dy  ∫dx   x  ρ(x,y,z) ,

Y  =  
1
M  ∫dz   ∫dy   ∫dx   y  ρ(x,y,z) ,

and Z  =  
1
M  ∫dz   ∫dy  ∫dx   z  ρ(x,y,z) .

The order of integrations doesn't matter for the result, and can be chosen for
convenience.

The brick is a special case where the density ρ is constant inside a finite region.

ρ(x,y,z) = ρ θ(x)θ(A–x) θ(y)θ(B–y) θ(z)θ(C–z)   .

 Find the total mass M and the center of mass R  for the brick.
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Solution

In the case of the brick, it is equally convenient to do the integrations in any order,
because the range of integration for each variable is independent of the other
variables.

 M  = ρ × volume = ρABC ρ = 
ABC
M

Then X  =  
1
M  ∫

0

C
dz   ∫

0

B
dy  ∫

0

A
dx  x  ρ = 

1
M  C B  12 A2 ρ X =  12 A

and Y  =  
1
M  ∫

0

C
dz   ∫

0

B
dy  y  ∫

0

A
dx   ρ = 

1
M  C  12 B2 A  ρ Y =  12 B

and Z  =  
1
M  ∫

0

C
dz  z  ∫

0

B
dy  ∫

0

A
dx   ρ = 

1
M   12 C2 A B  ρ Z =  12 C











X
 
Y
 
Z

  =  











 12 A 

 

 12 B 

 

 12 C 

check: the center of mass is at the center of the brick, as expected. √
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A.2.  Inertial tensor

The inertial tensor of a mass distribution ρ(r) is defined as

Iij  = ∫d3r ρ(r) (r2δij – ri rj ).

To calculate the inertial tensor, it is convenient to first calculate the second
moments Mij , defined by

Mij  = ∫d3r ρ(r) ri rj .
Then the inertial tensor is

Iij  = –Mij  + δij  tr M  = 






 –Mij  if i ≠ j

 
 ∑k≠i Mkk if i = j 

The procedure for calculating Mij  is just like the procedure for calculating Ri ,
except for an extra factor of rj  in the integrand.

Then Mxx  = ∫dz   ∫dy  ∫dx  x2  ρ(x,y,z) ,

Myy   = ∫dz   ∫dy  ∫dx  y2  ρ(x,y,z) ,

Mzz  = ∫dz   ∫dy  ∫dx  z2  ρ(x,y,z) ,

Mxy  = Myx  = ∫dz  ∫dy  ∫dx  xy  ρ(x,y,z) ,

Myz  = Mzy   = ∫dz  ∫dy  ∫dx  yz  ρ(x,y,z) ,

and Mxz  = Mzx  = ∫dz  ∫dy  ∫dx  xz  ρ(x,y,z) .
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Solution

calculate Mxx = ∫
0

A
dx  x2 ∫

0

B
dy ∫

0

C
dz  ρ =  13 A3 B C ρ =  13 A2 M

symmetry argument: interchanging x  ↔ y  amounts to interchanging A ↔ B

 ⇒ Myy  =   13 B2 M;   similarly Mzz  =   13 C2 M

calculate Mxy  =  ∫
0

A
dx x ∫

0

B
dy y ∫

0

C
dz   ρ  =  

A2

2   
B2

2  C  ρ  = 14 AB  M

check with symmetry argument: no change when  interchanging A ↔ B √

symmetry argument: interchanging x  ↔ z  amounts to interchanging A ↔ C

 ⇒ Myz  =   14 BC  M  ;   similarly Mxz  =   14 AC  M

use these results for Mij to
construct the inertial tensor :  I  = 

M
12 











4(B2+C2)
 
 –3AB
 
 –3AC

  

 –3AB
 
4(A2+C2)
 
 –3BC

  

 –3AC
 
 –3BC
 
4(A2+B2)

 .
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A.3.  Inertial tensor with the origin at the center of mass of the box

A rectangular brick lies with its center at
the origin of a Cartesian coordinate
system, and with its edges parallel to the
axes.

Its lengths in the x, y, and z  directions
are A, B, and C respectively.

The brick has a uniform density ρ .     x

y

z

C

A

B
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Solution

The boundaries are now xmin = – 
A
2 , xmax = + 

A
2 , ymin = – 

B
2 , ymax = + 

B
2 ,

zmin = – 
C
2 , zmax = + 

C
2  .

Then Mxx = ∫
-A/2

A/2
dx x2 ∫

–B/2

B/2
dy ∫

–C/2

C/2
dz   ρ  =   



1

3((A/2)3–(A/2)3)  B C  ρ

 = 
1
12 A3BC ρ = 

M
12 A2

A ↔ B  ⇒ Myy  =  
M
12 B2 ,    similarly Mzz  =   

M
12 C2 .

Mxy  = ∫
-A/2

A/2
dx  x ∫

–B/2

B/2
dy  y ∫

–C/2

C/2
dz  ρ=  



1

2((A/2)2–(A/2)2)((B/2)2–(B/2)2) C ρ = 0

similarly, Myz   =  Mxz   =   0.

Note: the vanishing of the off-diagonal elements reflects the symmetry of the mass
distribution in this coordinate system.

Use this Mij to find Icm  = 
M
12  







B2+C2

  0
  0

  
  0
A2+C2

  0
  

  0
  0
  A2+B2

 .

This result is related to the result of A.2 above by the translation theorem for inertial
tensors, as will be verified in the Worksheet Translating Tensors.
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B. APPLICATION: HOLLOW RECTANGULAR CAGE

A hollow rectangular cage lies in the
first octant of a Cartesian coordinate
system with one corner at the origin.

Its lengths in the x, y, and z  directions
are A, B, and C respectively.

The walls of the cage have a uniform
surface mass density σ .     x

y

z

C

A

B

The total mass of the cage is the sum of the masses of its walls.

The top and bottom walls each have area AB  and mass ABσ .

The front and back walls each have area BC  and mass BCσ .

The left and right walls each have area AC  and mass ACσ .

The total mass is  M  = 2(AB + BC + AC)σ

The mass density of each wall is

ρtop(x,y,z) = σ δ(z–C) θ(x) θ(A–x)  θ(y) θ(B–y) ,

ρbottom(x,y,z) = σ δ(z) θ(x) θ(A–x)  θ(y) θ(B–y) ,

ρfront(x,y,z) = σ δ(x–A) θ(y) θ(B–y)  θ(z) θ(C–z) ,

ρback(x,y,z) = σ δ(x) θ(y) θ(B–y)  θ(z) θ(C–z) ,

ρright(x,y,z) = σ δ(y–B) θ(x) θ(A–x)  θ(z) θ(C–z) ,

ρleft(x,y,z) = σ δ(y) θ(x) θ(A–x)  θ(z) θ(C–z) .

In each case, the θ funcitons limit the ranges of integration for two of the variables,
and the third integration uses the delta function.
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B.1.  Center of mass.

We can find the contributions of each wall
to the center-of-mass coordinate X :

x

y

z

C

A

B

front:   
1
M  ∫

0

C
dz   ∫

0

B
dy  ∫

–∞

∞
dx  x  σ δ(x–A)  = 

1
M   C B  A  σ

back:   
1
M  ∫

0

C
dz   ∫

0

B
dy  ∫

–∞

∞
dx  x  σ δ(x)  = 0

top:  
1
M  ∫

–∞

∞
dz   ∫

0

B
dy  ∫

0

A
dx  x  σ δ(z–C) =  

1
M   B   12A2  σ

bottom:  
1
M  ∫

–∞

∞
dz   ∫

0

B
dy  ∫

0

A
dx  x  σ δ(z) =  

1
M   B   12A2  σ

right:  
1
M  ∫

0

C
dz   ∫

–∞

∞
dy  ∫

0

A
dx  x  σ δ(y–B) = 

1
M   C   12 A2 σ

left:  
1
M  ∫

0

C
dz   ∫

–∞

∞
dy  ∫

0

A
dx  x  σ δ(y) = 

1
M   C   12 A2 σ

total: X   =  
σ
M  A (BC + AB + AC) = 

σ
2σ(AB+BC+AC) A(BC+AB+AC) = 

A
2

We can obtain similar results for Y  and Z  by repeating the computation, or by
permuting A, B ,and C  appropriately:

A ↔ B  ⇒  Y = 
B
2  ,     A ↔ C  ⇒   Z =  

C
2

Comment: no surprises here!  But we confirm our computational method. √
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B.2.  Inertial tensor for the rectangular cage

We calculate the contributions of each face to the
moments Mxx   and  Msy .  The other moments can
be obtained by permutations.

First, contributions to Mxx  :
x

y

z

C

A

B

front:   ∫
0

C
dz   ∫

0

B
dy  ∫

–∞

∞
dx  x2  σ δ(x–A)  =   C B  A 2 σ

back:  ∫
0

C
dz   ∫

0

B
dy  ∫

–∞

∞
dx  x2  σ δ(x)  = 0

top:  ∫
–∞

∞
dz   ∫

0

B
dy  ∫

0

A
dx  x2  σ δ(z–C) =   B   13A3  σ

bottom:  ∫
–∞

∞
dz   ∫

0

B
dy  ∫

0

A
dx  x2  σ δ(z) =   B   13A3  σ

right:  ∫
0

C
dz   ∫

–∞

∞
dy  ∫

0

A
dx  x2  σ δ(y–B) =  C  13A3  σ

left:  ∫
0

C
dz   ∫

–∞

∞
dy  ∫

0

A
dx  x2  σ δ(y) =  C   13A3  σ

total: Mxx   =  σ 
A2

3   (3BC + 2AB + 2AC) = 13 MA2 + 
σ
3 A2B C

We can obtain similar results for Y  and Z  by repeating the computation, or by
permuting A, B ,and C  appropriately:

x   ↔  y   ⇒ A  ↔  B : Myy  =  σ 
B2

3  (3AC + 2AB + 2BC) =  13 MB2 + 
σ
3 A B2C

x   ↔  z   ⇒ A  ↔  C : Mzz  =  σ 
C2

3  (3AB + 2AC + 2BC) =  13 MC2 + 
σ
3 A B C2
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B.2.  Inertial tensor for the rectangular cage (continued)

Next, contributions to Mxy  :

front:   ∫
0

C
dz   ∫

0

B
dy  y ∫

–∞

∞
dx  x  σ δ(x–A)  =   C   12B2  A  σ

back:  ∫
0

C
dz   ∫

0

B
dy  y ∫

–∞

∞
dx  x  σ δ(x)  = 0

top:  ∫
–∞

∞
dz   ∫

0

B
dy  y ∫

0

A
dx  x  σ δ(z–C)  =    12B2   12A2  σ

bottom:  ∫
–∞

∞
dz   ∫

0

B
dy  y ∫

0

A
dx  x  σ δ(z)  =   12B2   12A2  σ

right:  ∫
0

C
dz   ∫

–∞

∞
dy  y ∫

0

A
dx  x  σ δ(y–B)  =  C B   12A2  σ

left:  ∫
0

C
dz   ∫

–∞

∞
dy  y ∫

0

A
dx  x  σ δ(y)  =  0

total: Mxy   =  σ 
AB
4   (2BC + 2AB + 2AC) =   AB

4   M

We can obtain similar results for Mxz  and Myz  by repeating the computation, or by
permuting A, B ,and C  appropriately:

z   ↔  y    ⇒  C  ↔  B   : Mxz  =   AC
4   M

further permute this result:  x   ↔  y    ⇒  A  ↔  B   : Myz  =    BC
4   M

I = 
σ
12 













12AB2C+8B3(A+C)
+12ABC2+8C3(A+B)
 
–6AB(AB+BC+AC)
 
 
–6AC(AB+BC+AC)
 

   

–6AB(AB+BC+AC)
 
 
12A2BC+8A3(B+C)
+12ABC2+8C3(A+B)
 
–6BC(AB+BC+AC)
 

  

–6AC(AB+BC+AC)
 
 
–6BC(AB+BC+AC)
 
 
 12A2BC+8A3(B+C)
+12AB2C+8B3(A+C)
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B.3.  Inertial tensor in the center of mass for the rectangular cage

A hollow rectangular cage centered on
the origin of a Cartesian coordinate
system with sides parallel to the axes.

Its lengths in the x, y, and z  directions
are A, B, and C respectively.

The walls of the cage have a uniform
surface mass density σ .

    x

y

z

C

A

B

to find Mxx :

front:   ∫
–C/2

C/2
dz   ∫

–B/2

B/2
dy  ∫

–∞

∞
dx  x2  σ δ(x–A/2)  =  C B  



A

2
2

  σ

back:  ∫
–C/2

C/2
dz  ∫

–B/2

B/2
dy ∫

–∞

∞
dx  x2  σ δ(x+A/2)  = C B  



A

2
2

  σ

top:  ∫
–∞

∞
dz ∫

–B/2

B/2
dy  ∫

–A/2

A/2
dx  x2  σ δ(z–C/2) =   B   23 



A

2
3

  σ

bottom:  ∫
–∞

∞
dz  ∫

–B/2

B/2
dy  ∫

–A/2

A/2
dx  x2  σ δ(z+C/2) =   B   23 



A

2
3

  σ

right:  ∫
–C/2

C/2
dz   ∫

–∞

∞
dy  ∫

–A/2

A/2
dx  x2  σ δ(y–B/2) =  C   23 



A

2
3

  σ

left: ∫
–C/2

C/2
dz   ∫

–∞

∞
dy  ∫

–A/2

A/2
dx  x2  σ δ(y+B/2) =  C   23 



A

2
3

   σ

total: Mxx   =  σ 
A2

6   (3BC + AB + AC)

permuting:

x   ↔  y   ⇒ A  ↔  B : Myy  =  σ 
B2

6  (3AC + AB + BC)

x   ↔  z   ⇒ A  ↔  C : Mzz  =  σ 
C2

6  (3AB + AC + BC)
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B.3.  Inertial tensor in the center of mass for the rectangular cage

(continued)

To find Mxy  :

front:   ∫
–C/2

C/2
dz   ∫

–B/2

B/2
dy y ∫

–∞

∞
dx  x  σ δ(x–A/2)  =  0 .

Indeed, every off-diagonal moment vanishes, because the integrands are odd, while
the ranges of integration are even.

result:  

   I  =  
σ
6  









B3(A+C)+3AB2C
+C3(A+B)+3ABC2

0
 
0
 

  

0
 
A3(B+C)+3A2BC
+C3(A+B)+3ABC2

0
 

  

0
 
0
 
A3(B+C)+3A2BC
+B3(A+C)+3AB2C
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C.  APPLICATION:  CAGEX APPARATUS

The CageX apparatus consists of a hollow rectangular
cage with two square faces and four narrow
rectangular faces.

Its length in the x  and y  directions is L,  and the
length in the z  direction is h .

The walls of the cage have a uniform surface mass
density, and its total mass is M .

In addition there is a clay sphere of mass m  fastened
to the corner of the cage at the origin.  The radius of
this sphere is r .

x

y

z

L

h

L

m
r

mass
radius

1.  Center of mass for CageX apparatus

The expression in terms of M , m , L , h , and r  is:











X
 
Y
 
Z

  =  
M

M+m 











 12 L 

 

 12 L 

 

 12 h 

 .

2.  Inertial tensor for CageX apparatus

 

The expression for
the inertial tensor
of the ball
in terms of r and m
is approximately

 

Iball =  
2
5 m r2 











1
 
0
 
0

  

0
 
1
 
0

  

0
 
0
 
1

 .
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From B.2 above
the expression for
the inertial tensor
of the cage
in terms of
M, L,  and h
is approximately
 
Icage = M

24(L2+2Lh)











8L4+20L3h

+12L2h2+16Lh3

 
–6L3(L+2h)
 
 
–6L2h(L+2h)

–6L3(L+2h)
 
 
8L4+20L3h
+12L2h2+16Lh3

 
–6L2h(L+2h)

–6L2h(L+2h)
 
 
–6L2h(L+2h)
 
 
16L4+40L3h

3.  Numerical values

The numerical coordinates of the center of mass are











X
 
Y
 
Z

  =  
M

M+m 











 12 L 

 

 12 L 

 

 12 h 

 = 









 
 ________ 
 
 ________ 
 
 ________ 

      
inertial tensor
  of ball  

inertial tensor
  of cage   units!























 , 























We can see that the contribution of the ball to the inertial tensor (with respect to the
given origin) is        negligibly small                              .
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