solutions to

INERTIAL INTEGRALS

Worksheet 2 including worked examples

by Philip J. Siemens

TOPICS page
A. Sample calculation: rectangular brick 21. Center of mass
2. Inertial tensor
3. Inertial tensor in center of mass
B. Application: hollow rectangular cage 6

1. Center of mass
2. Inertial tensor
3. Inertial tensor in center of mass
C. Application: CageX apparatus 14
4. Center of mass
5. Inertial tensor
6. Numerical values

The CageX inertial tensor in the center of mass will be addressed in the Worksheet on Translating Tensors.

A. SAMPLE CALCULATION: RECTANGULAR BRICK

A rectangular brick lies in the first octant of a Cartesian coordinate system with one corner at the origin.

Its lengths in the x, y, and z directions are A, B, and C respectively.

The brick has a uniform density ρ.

A.1. Center of mass. $\rho(x, y, z) \equiv$ mass per unit volume

The center of mass of a mass distribution $\rho(\boldsymbol{r})$ is defined as

$$
\boldsymbol{R} \equiv \frac{1}{M} \int \mathrm{~d}^{3} r \rho(\boldsymbol{r}) \boldsymbol{r}
$$

The total mass M is the norm of the density distribution,

$$
M=\int \mathrm{d}^{3} r \rho(\boldsymbol{r}) .
$$

The components of \boldsymbol{R} are the normalized first moments of the density distribution $\rho(r)$,
and

$$
\begin{aligned}
& X=\frac{1}{M} \int \mathrm{~d} z \int \mathrm{~d} y \int \mathrm{~d} x \quad x \quad \rho(x, y, z) \\
& Y=\frac{1}{M} \int \mathrm{~d} z \int \mathrm{~d} y \int \mathrm{~d} x \quad y \rho(x, y, z) \\
& Z=\frac{1}{M} \int \mathrm{~d} z \int \mathrm{~d} y \int \mathrm{~d} x \quad \\
& z(x, y, z)
\end{aligned}
$$

The order of integrations doesn't matter for the result, and can be chosen for convenience.

The brick is a special case where the density ρ is constant inside a finite region.

$$
\rho(x, y, z)=\rho \theta(x) \theta(A-x) \theta(y) \theta(B-y) \theta(z) \theta(C-z) .
$$

Find the total mass M and the center of mass \boldsymbol{R} for the brick.

Solution

In the case of the brick, it is equally convenient to do the integrations in any order, because the range of integration for each variable is independent of the other variables.

$$
M=\rho \times \text { volume }=\rho A B C \quad \rho=\frac{A B C}{M}
$$

Then

$$
X=\frac{1}{M} \int_{0}^{C} \mathrm{~d} z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x \quad x \quad \rho=\frac{1}{M} C B \frac{1}{2} A^{2} \rho \quad X=\frac{1}{2} A
$$

and

$$
Y=\frac{1}{M} \int_{0}^{C} \mathrm{~d} z \int_{0}^{B} \mathrm{~d} y \quad y \int_{0}^{A} \mathrm{~d} x \quad \rho=\frac{1}{M} C \frac{1}{2} B^{2} A \quad \rho \quad Y=\frac{1}{2} B
$$

$$
Z=\frac{1}{M} \int_{0}^{C} \mathrm{~d} z z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x \quad \rho=\frac{1}{M} \frac{1}{2} C^{2} A B \quad \rho \quad Z=\frac{1}{2} C
$$

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} A \\
\frac{1}{2} B \\
\frac{1}{2} C
\end{array}\right)
$$

check: the center of mass is at the center of the brick, as expected.

A.2. Inertial tensor

The inertial tensor of a mass distribution $\rho(r)$ is defined as

$$
I_{i j}=\int \mathrm{d}^{3} r \rho(\boldsymbol{r})\left(\boldsymbol{r}^{2} \delta_{i j}-r_{i} r_{j}\right) .
$$

To calculate the inertial tensor, it is convenient to first calculate the second moments $M_{i j}$, defined by

$$
M_{i j}=\int \mathrm{d}^{3} r \rho(\boldsymbol{r}) r_{i} r_{j}
$$

Then the inertial tensor is

$$
I_{i j}=-M_{i j}+\delta_{i j} \operatorname{tr} M=\binom{-M_{i j} \text { if } i \neq j}{\sum_{k \neq i} M_{k k} \text { if } i=j}
$$

The procedure for calculating $M_{i j}$ is just like the procedure for calculating R_{i}, except for an extra factor of r_{j} in the integrand.

Then

$$
\begin{gathered}
M_{x x}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x x^{2} \rho(x, y, z), \\
M_{y y}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x y^{2} \rho(x, y, z), \\
M_{z z}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x z^{2} \rho(x, y, z), \\
M_{x y}=M_{y x}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x x y \rho(x, y, z), \\
M_{y z}=M_{z y}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x y z \rho(x, y, z), \\
M_{x z}=M_{z x}=\int \mathrm{d} z \int \mathrm{~d} y \int \mathrm{~d} x x z \rho(x, y, z) .
\end{gathered}
$$

and

Solution

calculate

$$
M_{x x}=\int_{0}^{A} \mathrm{~d} x x^{2} \int_{0}^{B} \mathrm{~d} y \int_{0}^{C} \mathrm{~d} z \rho=\frac{1}{3} A^{3} B C \rho=\frac{1}{3} A^{2} M
$$

symmetry argument: interchanging $x \leftrightarrow y$ amounts to interchanging $A \leftrightarrow B$

$$
\Rightarrow \quad M_{y y}=\frac{1}{3} B^{2} M ; \text { similarly } M_{z z}=\frac{1}{3} C^{2} M
$$

calculate $\quad M_{x y}=\int_{0}^{A} \mathrm{~d} x x \int_{0}^{B} \mathrm{~d} y y \int_{0}^{C} \mathrm{~d} z \quad \rho=\frac{A^{2}}{2} \frac{B^{2}}{2} C \rho=\frac{1}{4} A B \quad M$
check with symmetry argument: no change when interchanging $A \leftrightarrow B$ symmetry argument: interchanging $x \leftrightarrow z$ amounts to interchanging $A \leftrightarrow C$

$$
\Rightarrow \quad M_{y z}=\frac{1}{4} B C M ; \text { similarly } M_{x z}=\frac{1}{4} A C M
$$

A.3. Inertial tensor with the origin at the center of mass of the box

A rectangular brick lies with its center at the origin of a Cartesian coordinate system, and with its edges parallel to the axes.

Its lengths in the x, y, and z directions are A, B, and C respectively.

The brick has a uniform density ρ.

Solution

The boundaries are now $x_{\min }=-\frac{A}{2}, x_{\max }=+\frac{A}{2}, y_{\min }=-\frac{B}{2}, y_{\max }=+\frac{B}{2}$,

$$
z_{\min }=-\frac{C}{2}, z_{\max }=+\frac{C}{2} .
$$

$$
\begin{gathered}
\text { Then } M_{x x}=\int_{-A / 2}^{A / 2} \mathrm{~d}_{2} x^{2} \int_{-B / 2}^{B / 2} \int_{-C / 2}^{C / 2} \mathrm{~d} z \\
=\frac{1}{12} A^{3} B C \rho=\left(\frac{1}{3}\left((A / 2)^{3}-(A / 2)^{3}\right)\right) B C \rho \\
A \leftrightarrow B \Rightarrow \quad A_{y y}=\frac{M}{12} B^{2}, \quad \text { similarly } M_{z z}=\frac{M}{12} C^{2} .
\end{gathered}
$$

$$
\begin{gathered}
M_{x y}=\int_{-A / 2}^{A / 2} \mathrm{~d}_{2}^{B / 2} x \int_{-B / 2}^{B / 2} y \int_{-C / 2}^{C / 2} \mathrm{~d} z \rho=\left(\frac{1}{2}\left((A / 2)^{2}-(A / 2)^{2}\right)\left((B / 2)^{2}-(B / 2)^{2}\right)\right) C \rho=0 \\
\text { similarly, } M_{y z}=M_{x z}=0 .
\end{gathered}
$$

Note: the vanishing of the off-diagonal elements reflects the symmetry of the mass distribution in this coordinate system.

Use this $M_{i j}$ to find $\quad I_{\mathrm{cm}}=\frac{M}{12}\left(\begin{array}{ccl}B^{2}+C^{2} & 0 & 0 \\ 0 & A^{2}+C^{2} & 0 \\ 0 & 0 & A^{2}+B^{2}\end{array}\right)$.
This result is related to the result of A. 2 above by the translation theorem for inertial tensors, as will be verified in the Worksheet Translating Tensors.

B. APPLICATION: HOLLOW RECTANGULAR CAGE

A hollow rectangular cage lies in the first octant of a Cartesian coordinate system with one corner at the origin.

Its lengths in the x, y, and z directions are A, B, and C respectively.

The walls of the cage have a uniform surface mass density σ.

The total mass of the cage is the sum of the masses of its walls.
The top and bottom walls each have area $A B$ and mass $A B \sigma$.
The front and back walls each have area $B C$ and mass $B C \sigma$.
The left and right walls each have area $A C$ and mass $A C \sigma$.
The total mass is

$$
M=2(A B+B C+A C) \sigma
$$

The mass density of each wall is

$$
\begin{gathered}
\rho_{\text {top }}(x, y, z)=\sigma \delta(z-C) \theta(x) \theta(A-x) \theta(y) \theta(B-y), \\
\rho_{\text {bottom }}(x, y, z)=\sigma \delta(z) \theta(x) \theta(A-x) \theta(y) \theta(B-y), \\
\rho_{\text {front }}(x, y, z)=\sigma \delta(x-A) \theta(y) \theta(B-y) \theta(z) \theta(C-z), \\
\rho_{\text {back }}(x, y, z)=\sigma \delta(x) \theta(y) \theta(B-y) \theta(z) \theta(C-z), \\
\rho_{\text {right }}(x, y, z)=\sigma \delta(y-B) \theta(x) \theta(A-x) \theta(z) \theta(C-z), \\
\rho_{\text {left }}(x, y, z)=\sigma \delta(y) \theta(x) \theta(A-x) \theta(z) \theta(C-z) .
\end{gathered}
$$

In each case, the θ funcitons limit the ranges of integration for two of the variables, and the third integration uses the delta function.

B.1. Center of mass.

We can find the contributions of each wall to the center-of-mass coordinate X :

front:

$$
\frac{1}{M} \int_{0}^{C} \mathrm{~d} z \int_{0}^{B} \mathrm{~d} y \int_{-\infty}^{\infty} \mathrm{d} x x \sigma \delta(x-A)=\frac{1}{M} \text { CBA } \sigma
$$

back:

$$
\frac{1}{M} \int_{0}^{C} \mathrm{~d} z \quad \int_{0}^{B} \mathrm{~d} y \int_{-\infty}^{\infty} \mathrm{d} x \quad x \quad \sigma \delta(x)=0
$$

$$
\frac{1}{M} \int_{-\infty}^{\infty} \mathrm{d} z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(z-C)=\frac{1}{M} \quad B \quad \frac{1}{2} A^{2} \quad \sigma
$$

bottom:

$$
\frac{1}{M} \int_{-\infty}^{\infty} \mathrm{d} z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(z)=\frac{1}{M} \quad B \quad \frac{1}{2} A^{2} \sigma
$$

right: $\quad \frac{1}{M} \int_{0}^{C} \mathrm{~d} z \int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(y-B)=\frac{1}{M} \quad C \quad \frac{1}{2} A^{2} \sigma$
left:

$$
\frac{1}{M} \int_{0}^{C} \mathrm{~d} z \int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{A} \mathrm{~d} x x \sigma \delta(y)=\frac{1}{M} \quad C \quad \frac{1}{2} A^{2} \sigma
$$

total: $X=\frac{\sigma}{M} A(B C+A B+A C)=\frac{\sigma}{2 \sigma(A B+B C+A C)} A(B C+A B+A C)=\frac{A}{2}$
We can obtain similar results for Y and Z by repeating the computation, or by permuting A, B, and C appropriately:

$$
A \leftrightarrow B \Rightarrow Y=\frac{B}{2}, \quad A \leftrightarrow C \Rightarrow Z=\frac{C}{2}
$$

Comment: no surprises here! But we confirm our computational method.

B.2. Inertial tensor for the rectangular cage

We calculate the contributions of each face to the moments $M_{x x}$ and $M_{s y}$. The other moments can be obtained by permutations.

First, contributions to $M_{x x}$:

front:

$$
\int_{0}^{C} \mathrm{~d} z \int_{0}^{B} \mathrm{~d} y \int_{-\infty}^{\infty} \mathrm{d} x x^{2} \sigma \delta(x-A)=C B A^{2} \sigma
$$

back:

$$
\int_{0}^{C} \mathrm{~d} z \int_{0}^{B} \mathrm{~d} y \int_{-\infty}^{\infty} \mathrm{d} x x^{2} \quad \sigma \delta(x)=0
$$

top:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x x^{2} \sigma \delta(z-C)=B \quad \frac{1}{3} A^{3} \sigma
$$

bottom:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \int_{0}^{B} \mathrm{~d} y \int_{0}^{A} \mathrm{~d} x x^{2} \sigma \delta(z)=B \frac{1}{3} A^{3} \sigma
$$

$$
\int_{0}^{C} \mathrm{~d} z \int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{A} \mathrm{~d} x x^{2} \sigma \delta(y-B)=C \frac{1}{3} A^{3} \sigma
$$

left:

$$
\int_{0}^{C} \mathrm{~d} z \int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{A} \mathrm{~d} x x^{2} \quad \sigma \delta(y)=C \quad \frac{1}{3} A^{3} \quad \sigma
$$

total: $\quad M_{x x}=\sigma \frac{A^{2}}{3}(3 B C+2 A B+2 A C)=\frac{1}{3} M A^{2}+\frac{\sigma}{3} A^{2} B C$
We can obtain similar results for Y and Z by repeating the computation, or by permuting A, B, and C appropriately:

$$
\begin{aligned}
& x \leftrightarrow y \Rightarrow A \leftrightarrow B: M_{y y}=\sigma \frac{B^{2}}{3}(3 A C+2 A B+2 B C)=\frac{1}{3} M B^{2}+\frac{\sigma}{3} A B^{2} C \\
& x \leftrightarrow z \Rightarrow A \leftrightarrow C: M_{z z}=\sigma \frac{C^{2}}{3}(3 A B+2 A C+2 B C)=\frac{1}{3} M C^{2}+\frac{\sigma}{3} A B C^{2}
\end{aligned}
$$

B.2. Inertial tensor for the rectangular cage (continued)

Next, contributions to $M_{x y}$:
front:

$$
\int_{0}^{C} z \int_{0}^{B} \mathrm{~d} y \quad y \int_{-\infty}^{\infty} \mathrm{d} x x \sigma \delta(x-A)=C \frac{1}{2} B^{2} A \sigma
$$

back:

$$
\int_{0}^{C} \mathrm{~d} z \quad \int_{0}^{B} \mathrm{~d} y \quad y \quad \int_{-\infty}^{\infty} \mathrm{d} x \quad x \quad \sigma \delta(x)=0
$$

top:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \int_{0}^{B} \mathrm{~d} y \quad y \quad \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(z-C)=\frac{1}{2} B^{2} \quad \frac{1}{2} A^{2} \sigma
$$

bottom:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \quad \int_{0}^{B} \mathrm{~d} y \quad y \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(z)=\frac{1}{2} B^{2} \quad \frac{1}{2} A^{2} \sigma
$$

right:

$$
\int_{0}^{C} \mathrm{~d} z \int_{-\infty}^{\infty} \mathrm{d} y \quad y \int_{0}^{A} \mathrm{~d} x \quad x \quad \sigma \delta(y-B)=C B \quad \frac{1}{2} A^{2} \sigma
$$

left:

$$
\int_{0}^{C} \mathrm{~d} z \quad \int_{-\infty}^{\infty} \mathrm{d} y y \int_{0}^{A} \mathrm{~d} x x \quad \sigma \delta(y)=0
$$

total: $\quad M_{x y}=\sigma \frac{A B}{4}(2 B C+2 A B+2 A C)=\frac{A B}{4} M$
We can obtain similar results for $M_{x z}$ and $M_{y z}$ by repeating the computation, or by permuting A, B, and C appropriately:

$$
z \leftrightarrow y \Rightarrow C \leftrightarrow B: M_{x z}=\frac{A C}{4} M
$$

further permute this result: $x \leftrightarrow y \Rightarrow A \leftrightarrow B: M_{y z}=\frac{B C}{4} M$
$I=\frac{\sigma}{12}\left(\begin{array}{lll}12 A B^{2} C+8 B^{3}(A+C) & -6 A B(A B+B C+A C) & -6 A C(A B+B C+A C) \\ +12 A B C^{2}+8 C^{3}(A+B) & & \\ -6 A B(A B+B C+A C) & 12 A^{2} B C+8 A^{3}(B+C) & -6 B C(A B+B C+A C) \\ & +12 A B C^{2}+8 C^{3}(A+B) & \\ -6 A C(A B+B C+A C) & -6 B C(A B+B C+A C) & 12 A^{2} B C+8 A^{3}(B+C) \\ & & +12 A B^{2} C+8 B^{3}(A+C)\end{array}\right)$

B.3. Inertial tensor in the center of mass for the rectangular cage

A hollow rectangular cage centered on the origin of a Cartesian coordinate system with sides parallel to the axes.

Its lengths in the x, y, and z directions are A, B, and C respectively.

The walls of the cage have a uniform surface mass density σ.

to find $M_{x x}$:
front:

$$
\int_{-C / 2}^{C / 2} \int_{-B / 2}^{B / 2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} x x^{2} \quad \sigma \delta(x-A / 2)=C B\left(\frac{A}{2}\right)^{2} \sigma
$$

back:

$$
\int_{-C / 2}^{C / 2} \int_{-B / 2}^{B / 2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} x x^{2} \sigma \delta(x+A / 2)=C B\left(\frac{A}{2}\right)^{2} \sigma
$$

top:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \int_{-B / 2}^{B / 2} \mathrm{~d} y \int_{-A / 2}^{A / 2} \mathrm{~d} x x^{2} \quad \sigma \delta(z-C / 2)=B \quad \frac{2}{3}\left(\frac{A}{2}\right)^{3} \sigma
$$

bottom:

$$
\int_{-\infty}^{\infty} \mathrm{d} z \underset{-B / 2}{B / 2} \int_{-A / 2}^{A / 2} \mathrm{~d} x x^{2} \sigma \delta(z+C / 2)=B \quad \frac{2}{3}\left(\frac{A}{2}\right)^{3} \sigma
$$

right:

$$
\int_{-C / 2}^{C / 2} \int_{-\infty}^{\infty} \int_{-A / 2}^{A} \mathrm{~d} y \int_{-2}^{A} x x^{2} \sigma \delta(y-B / 2)=C \frac{2}{3}\left(\frac{A}{2}\right)^{3} \sigma
$$

left:

$$
\int_{-C / 2}^{C / 2} \mathrm{~d} z \quad \int_{-\infty}^{\infty} \mathrm{d} y \int_{-A / 2}^{A / 2} \mathrm{~d} x x^{2} \sigma \delta(y+B / 2)=C \quad \frac{2}{3}\left(\frac{A}{2}\right)^{3} \sigma
$$

total:

$$
M_{x x}=\sigma \frac{A^{2}}{6}(3 B C+A B+A C)
$$

permuting:

$$
\begin{aligned}
& x \leftrightarrow y \Rightarrow A \leftrightarrow B: M_{y y}=\sigma \frac{B^{2}}{6}(3 A C+A B+B C) \\
& x \leftrightarrow z \Rightarrow A \leftrightarrow C: M_{z z}=\sigma \frac{C^{2}}{6}(3 A B+A C+B C)
\end{aligned}
$$

B.3. Inertial tensor in the center of mass for the rectangular cage

To find $M_{x y}$:
front:

$$
\int_{-C / 2}^{C / 2} \int_{-B / 2}^{B / 2} \mathrm{~d} y y \int_{-\infty}^{\infty} \mathrm{d} x \quad x \quad \sigma \delta(x-A / 2)=0 .
$$

Indeed, every off-diagonal moment vanishes, because the integrands are odd, while the ranges of integration are even.
result:

$$
I=\frac{\sigma}{6}\left(\begin{array}{lll}
B^{3}(A+C)+3 A B^{2} C & 0 & 0 \\
+C^{3}(A+B)+3 A B C^{2} & & A^{3}(B+C)+3 A^{2} B C \\
0 & +C^{3}(A+B)+3 A B C^{2} & \\
0 & 0 & A^{3}(B+C)+3 A^{2} B C \\
0 & & +B^{3}(A+C)+3 A B^{2} C
\end{array}\right)
$$

C. APPLICATION: CAGEX APPARATUS

The CageX apparatus consists of a hollow rectangular cage with two square faces and four narrow rectangular faces.

Its length in the x and y directions is L, and the length in the z direction is h.

The walls of the cage have a uniform surface mass density, and its total mass is M.

In addition there is a clay sphere of mass m fastened to the corner of the cage at the origin. The radius of
 this sphere is r.

1. Center of mass for CageX apparatus

The expression in terms of M, m, L, h, and r is:

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\frac{M}{M+m}\left(\begin{array}{c}
\frac{1}{2} L \\
\frac{1}{2} L \\
\frac{1}{2} h
\end{array}\right) .
$$

2. Inertial tensor for Cage X apparatus

The expression for the inertial tensor of the ball in terms of r and m is approximately

$$
I_{\text {ball }}=\frac{2}{5} m r^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

From B. 2 above
the expression for
the inertial tensor
of the cage
in terms of
$\begin{aligned} & M, L, \text { and } h \\ & \text { is approximately }\end{aligned}$
$I_{\text {cage }}=$$\frac{M}{24\left(L^{2}+2 L h\right)}\left(\begin{array}{lll}8 L^{4}+20 L^{3} h & -6 L^{3}(L+2 h) & -6 L^{2} h(L+2 h) \\ +12 L^{2} h^{2}+16 L h^{3} & \\ -6 L^{3}(L+2 h) & 8 L^{4}+20 L^{3} h & -6 L^{2} h(L+2 h) \\ -6 L^{2} h(L+2 h) & -6 L^{2} h(L+2 h) & 16 L^{4}+40 L^{3} h\end{array}\right)$

3. Numerical values

The numerical coordinates of the center of mass are

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\frac{M}{M+m}\left(\begin{array}{l}
\frac{1}{2} L \\
\frac{1}{2} L \\
\frac{1}{2} h
\end{array}\right)=\binom{\square}{\square}
$$

We can see that the contribution of the ball to the inertial tensor (with respect to the given origin) is \qquad negligibly small

