Quantum Calculations on a Ring II

In this activity, your group will carry out calculations on the following quantum state on a ring:

$$
|\Psi\rangle=\frac{3}{5}|-1\rangle+\frac{4}{5}|2\rangle
$$

1. You carry out a measurement to determine the energy of the particle at time $t=\frac{I \pi}{6 \hbar}$. Calculate the probability that you measure the energy to be $\frac{\hbar^{2}}{2!}$. What representation/basis did you use to do this calculation and why did you use this representation?
2. You carry out a measurement to determine the z-component of the angular momentum of the particle at time $t=\frac{I \pi}{6 \hbar}$. Calculate the probability that you measure the z -component of the angular momentum to be $-\hbar$. What representation/basis did you use to do this calculation and why did you use this representation?
3. Calculate the probability that the particle can be found in the region $0<\phi<\frac{\pi}{3}$. What representation/basis did you use to do this calculation and why did you use this representation?
4. You carry out a measurement on the location of the particle at time, $t=0$. Calculate the probability of finding the particle in the region $0<\phi<\frac{\pi}{3}$.
5. You carry out a measurement on the location of the particle at time, $t=\frac{I \pi}{6 \hbar}$. Calculate the probability of finding the particle in the region $0<\phi<\frac{\pi}{3}$.
