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Abstract

The two body problem is treated classically. The reduced mass is
used to reduce the two body problem to an equivalent one body prob-
lem. Conservation of angular momentum is derived and exploited to
simplify the problem. Spherical coordinates are chosen to respect this
symmetry. The equations of motion are obtained in two different ways:
using Newton’s second law, and using energy conservation. Kepler’s
laws are derived. The concept of an effective potential is introduced.
The equations of motion are solved for the orbits in the case that
the force obeys an inverse square law. The equations of motion are
also solved, up to quadrature (i.e. in terms of definite integrals) and
numerical integration is used to explore the solutions.
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2 INTRODUCTION

In the Central Forces paradigm, we will examine a mathematically tractable
and physically useful problem - that of two bodies interacting with each
other through a force that has two characteristics: (a) it depends only on
the separation between the two bodies, and (b) it points along the line con-
necting the two bodies. Such a force is called a central force. Perhaps the
most common examples of this type of force are those that follow the 1
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behavior, specifically the Newtonian gravitational force between two point
masses or spherically symmetric bodies and the Coulomb force between two
point or spherically symmetric electric charges. Clearly both of these exam-
ples are idealizations - neither ideal point masses or charges nor perfectly
spherically symmetric mass or charge distributions exist in nature, except
perhaps for elementary particles such as electrons. However, deviations from
ideal behavior are often small and can be neglected to within a reasonable
approximation.

These notes discuss two solutions to the central force problem—classical
behavior exemplified by the gravitational interaction and quantum behavior
exemplified by the Coulomb interaction. In this way, we will be able to
explore the strong similarities and the important differences between classical
and quantum physics. Notice the difference in length scale: the archetypal
gravitational example is planetary motion—at astronomical length scales,
the archetypal Coulomb example is the hydrogen atom—at atomic length
scales. We will also consider forces that depend on r in other ways and the
kinds of motion they produce.

One of the unifying themes of this topic is the importance of angular
momentum. You should have covered angular momentum in your introduc-
tory physics course. Before starting these notes, you might find it helpful
to review the definition of angular momentum, how it enters into dynamical
equations (Newton’s laws and kinetic energy, for example), and the law of
conservation of angular momentum.

You should read these notes in conjunction with the assigned readings
in your textbooks. You should note that the development of the classical
central force problem in other textbooks may use a formulation based on La-
grangians, which you will not cover until the Classical Mechanics Capstone.
We will use a different approach in these notes. You are not responsible for
learning the Lagrangian formalism for this course, but your reading in other
books will be clearer if you know that the Lagrangian is defined simply as the
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difference between kinetic energy and potential energy: L = T − U . And be
sure you don’t confuse the various symbols. Some books use L to represent
the Lagrangian instead of L, L to represent the angular momentum vector,
and l to represent the magnitude of the angular momentum. We will also
use Lu (u = x, y, z) to represent the components of the angular momentum
vector. Some authors use K to represent kinetic energy or V to represent
potential energy.

We will obtain the equations of motion in two equivalent ways, 1) using
Newton’s second law and 2) using energy conservation. The second approach
is slightly more sophisticated in that it exploits more of the symmetries from
the beginning.

3 Systems of Particles

Consider a system of n different masses mi, interacting with each other and
being acted on by external forces. We can write Newton’s second law for the
positions ri of each of these masses with respect to a fixed origin O, thereby
obtaining a system of equations governing the motion of the masses.

m1
d2r1

dt2
= F 1 + 0 + f 12 + f 13 + . . . + f 1n

m2
d2r2

dt2
= F 2 + f 21 + 0 + f 23 + . . . + f 2n (1)

...

mn
d2rn

dt2
= F n + fn1 + fn2 + . . . + fn(n−1) + 0

Here, we have chosen the notation F i for the net external forces acting on
mass mi and f ij for the internal force of mass mj acting on mi.

In general, each internal force f ij will depend on the positions of the
particles ri and rj in some complicated way, making (1) a set of coupled
differential equations. To solve (1), we first need to decouple the differential
equations, i.e. find an equivalent set of differential equations in which each
equation contains only one variable.

The weak form of Newton’s third law states that the force f 12 of m2

on m1 is equal and opposite to the force f 21 of m1 on m2. We see that
each internal force appears twice in the system of equations (1), once with a
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positive sign and once with a negative sign. Therefore, if we add all of the
equations in (1) together, the internal forces will all cancel, leaving:

n
∑

i=1

mi
d2ri

dt2
=

n
∑

i=1

F i (2)

Notice what a surprising equation (2) is. The right-hand side directs us
to add up all of the external forces, each of which acts on a different mass;
something you were taught never to do in introductory physics.

The left-hand side of (2) directs us to add up (the second derivatives of)
n “weighted” position vectors pointing from the origin to different masses.
We can simplify the left-hand side of (2) if we multiply and divide by the
total mass M = m1 + m2 + . . . + mn and use the linearity of differentiation
to “factor out” the derivative operator:

n
∑

i=1

mi
d2ri

dt2
= M

n
∑

i=1

mi

M

d2ri

dt2
(3)

= M
d2

dt2

(

n
∑

i=1

mi

M
ri

)

(4)

= M
d2R

dt2
(5)

We recognize (or define) the quantity in the parentheses on the right-hand
side of (4) as the position vector R from the origin to the “center of mass”
of the system of particles.

R =
n

∑

i=1

mi

M
ri (6)

With these simplifications, equation (2) becomes:

M
d2R

dt2
=

n
∑

i=1

F i (7)

which has the form of Newton’s 2nd Law for a fictitious particle with mass
M sitting at the center of mass of the system of particles and acted on by
all of the external forces from the original system.
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We can define the momentum of the center of mass as the total mass
times the time derivative of the position of the center of mass:

P = M
dR

dt
(8)

If there are no external forces acting, then the acceleration of the center of
mass is zero and the momentum of the center of mass is constant in time
(conserved).

M
d2R

dt2
=

dP

dt
= 0 (9)

Notice that the entire discussion above applies even if all of the internal
forces are zero f ij = 0, i.e. none of the particles have any way of knowing
that the others are even present. Such particles are called non-interacting.
The position of the center of mass of the system will still move according to
equation (7).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. (TM 9.6) Consider two particles of equal mass m. The forces on the
particles are F 1 = 0 and F 2 = F0ı̂. If the particles are initially at rest
at the origin, find the position, velocity, and acceleration of the center
of mass as functions of time. Solve this problem in two ways, with or
without theorems about the center of mass motion and write a short
description comparing the two solutions.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 REDUCED MASS

So far, we have found one decoupled equation to replace ( 2.1 ). What about
the other n − 1 equations? It turns out that, in general, there is no way to
decouple and solve the other equations. Physicists often say, “The n-body
problem can not be solved in general.” Whenever you are stuck trying to
solve a general problem, it often pays to start with simpler examples to build
up your intuition. We will make several assumptions to simplify this problem
and keep track of them in a list.
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1. Assume that there are no external forces acting.

2. Assume that there are only two masses.

The system of equations ( 2.1 ) reduces to:

m1
d2r1

dt2
= −f 21

(10)

m2
d2r2

dt2
= f 21

Because we added the two equations of motion to find the equation of
motion for the center-of-mass, we are led now to consider subtracting the
equations so as to get r = r2 − r1. Figure 1 shows the basic geometry of
our problem. r1 and r2 are the position vectors of the two masses measured
with respect to an arbitrary coordinate origin O. We call the displacement

2

1r

r

1

x

y

z

r

m 2

m

Figure 1: The position vectors for m1 and m2 and the displacement vector
between them.

between the two masses r. The magnitude of this displacement is r and the
direction is r̂. These quantities can be found from r1 and r2 by:

r = r2 − r1 (11)

r = |r| = |r2 − r1| (12)

r̂ =
r

r
(13)
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We see that before we subtract, we should multiply the first equation in
(11) by m2 and the second equation by m1 so that the factors in front of
the second derivative are the same. Subtracting the first equation from the
second and regrouping, we obtain:

m1m2
d2

dt2
(r2 − r1) = m1m2

d2

dt2
(r) = (m1 + m2) f 21 (14)

or rearranging:
m1m2

m1 + m2

d2r

dt2
= µ

d2r

dt2
= f 21 (15)

The combination of masses

µ =
m1m2

m1 + m2
(16)

is called the reduced mass. This equation is in the same form as Newton’s
law for a single fictitious mass µ, with position vector r, moving subject to
the force f 21. For the rest of these notes, we will talk about “the mass”,
meaning this fictitious particle. Note that to solve the original two mass
problem we started with, we will need to transform the solutions for r back
to r1 and r2. See Problem 1.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. The figure below shows the orbit of a “fictitious” reduced mass, µ,
traveling around the center-of-mass at the origin. The position vector r
locates the particle at a particular instant t. Assume that m2 = m1 and
draw on the figure the position vectors for m1 and m2 corresponding to
r. Also sketch the orbits for m1 and m2. Give an example of a physical
situation that might produce this type of motion. (NOTE: Do this
problem “by hand.” Do not use MAPLE or a graphing calculator.)
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Repeat this problem for m2 > m1 and m2 >> m1.

2. Find rsun − rcm and µ for the Sun–Earth system. Compare rsun − rcm

to the radius of the Sun and to the distance from the Sun to the Earth.
Repeat the calculation for the Sun–Jupiter system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 CENTRAL FORCES

Our ultimate goal is to solve the equations of motion for two masses m1 and
m2 subject to a central force acting between them. When you considered this
problem in introductory physics, you assumed that one of the masses was so
large that it effectively remained at rest while all of the motion belonged to
the other object. This assumption works fairly well for the Earth orbiting
around the Sun or for a satellite orbiting around the Earth, but in general
we are going to have to solve for the motion of both objects.

In the introduction, we defined a central force to satisfy two character-
istics. We can now write turn these descriptions of the characteristics into
equations:

(a) a central force depends only on the separation between the two bodies

f 21 = −f 12 = f(r2 − r1) (17)
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(b) it points along the line connecting the two bodies

f 21 = −f 12 = f(r2 − r1) = f(r) r̂ (18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. If a central force is the only force acting on a system of two masses (i.e.
no external forces), what will the motion of the center of mass be?

2. Which of the forces which we found in the Static Fields Paradigm (i.e.
!g, q !E, q!v × !B) can be central forces? which cannot?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 ANGULAR MOMENTUM

Consider the angular momentum of the reduced mass system L = r × p =
r × µv. How does L change with time? We have:

dL

dt
=

d

dt
(r × µv) (19)

= r × µv̇ + v × µv (20)

= r × µa (21)

= r × F (22)

= rr̂ × f(r)r̂ (23)

= 0 (24)

(To get from (19) to (20), use the product rule, which is valid for cross
products as long as you don’t change the order of the factors. The second
term in (20) is zero since v×v = 0.) Recall that r×F which occurs in (22)
is called the torque τ . We have shown that in the case of central forces the
time derivative of the angular momentum, and hence the torque, are zero.
Therefore:

τ =
dL

dt
= 0 ⇒ L = constant (25)

i.e. the angular momentum is conserved.
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The force F (r) depends only on the distance of the reduced mass from
the center of mass and not on the orientation of the system in space. There-
fore, this system is spherically symmetric; it is invariant (unchanged) under
rotations. Noether’s theorem states that whenever the laws of physics are
invariant under a particular motion or other operation, there will be a cor-
responding conserved quantity. In this case, we see that the conservation
of angular momentum is related to the invariance of the physical system
under rotations. Noether’s theorem, in general, is most easily discussed us-
ing Lagrangian techniques. You will see this again the Classical Mechanics
Capstone.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. Which of the equations in the derivation of (19)–(24) are valid only for
central forces, and which are true more generally?

2. (Challenging) What invariances of physics are related to conservation
of linear momentum and conservation of energy?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 COORDINATES

The time has come to choose a coordinate system. We have argued that
the problem is spherically symmetric in nature. Therefore, it will be to our
advantage to use spherical coordinates, defined by:

x = r sin θ cosφ (26)

y = r sin θ sinφ (27)

z = r cos θ (28)

(see Figure 2), rather than the more comfortable Cartesian coordinates x, y,
and z.

In fact, in the present classical mechanics context, we can do even better.
For a central force:

F = f(r) r̂ (29)
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θ

x

z

r

r

Spherical Coordinates

y

x=r sin θ cos φ
y=r sin θ sin φ
z=r cos θ

(r,  ,  )θ φ
φ

θ

Figure 2: Spherical Coordinates.

the force, and hence the acceleration, are in the radial direction. Therefore,
the path of the motion (orbit) will be in the plane determined by the position
vector r and velocity vector v of the reduced mass at any one moment of
time. Since there is never a component of force out of this plane, the sub-
sequent motion must remain in the plane. In this plane, choose plane polar
coordinates:

x = r cosφ (30)

y = r sinφ (31)

Notice that many textbooks choose to call the angle of plane polar coordi-
nates θ. See Practice Problem 1.3 for the reason that we choose to call the
angle φ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Problems

1. Convince yourself that the plane of the orbit is perpendicular to the
angular momentum vector L.

2. Show that a central force is always conservative. Find the scalar po-
tential U corresponding to the central force F = f(r) r̂ and show that
it depends only on the distance from the center of mass U = U(r).

3. Show that the plane polar coordinates we have chosen are equivalent
to spherical coordinates if we make the choices:

(a) The direction of z in spherical coordinates is the same as the
direction of L.

(b) The θ of spherical coordinates is chosen to be π/2, so that the
orbit is in the equatorial plane of spherical coordinates.

Some textbooks argue that you can obtain plane polar coordinates in
terms of r and the polar angle θ by taking spherical coordinates (26)–
(28) and making the choice dφ = 0. Why is this choice actually mis-
leading? Hint: In spherical coordinates, what is the range of θ? These
textbooks label the angle θ because this is the most common convention
for polar coordinates alone. However, if you do this, polar coordinates
do not correspond in any nice way to spherical coordinates. Because
I want you to see the relationship between classical and quantum me-
chanics and because the quantum version of central forces will require
the use of spherical coordinates, we will call the polar coordinate angle
φ.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 VELOCITY & ACCELERATION

Newton’s Laws require a knowledge of velocity and acceleration. With our
choice of polar coordinates:

x = r cosφ (32)

y = r sinφ (33)
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we must deal with the problem of how to compute velocity and acceleration
as time derivatives of the position vector r in terms of the coordinates r and
φ. A difficulty arises because r̂ and φ̂ are not independent of position and
therefore are not independent of time. This problem does not present itself
in Cartesian coordinates because ı̂, ̂, and k̂ are independent of position. We
can exploit this Cartesian independence to help us in polar coordinates. r̂
and φ̂ are given, in terms of ı̂ and ̂, by

r̂ = cosφ ı̂ + sinφ ̂ (34)

φ̂ = − sinφ ı̂ + cosφ ̂ (35)

j

r
φ

φ

x

y

r i

Figure 3: The relationship between unit vectors in polar coordinates (r̂, φ̂)
and unit vectors in Cartesian coordinates (ı̂, ̂).

You should recognize this basis change as a rotation performed on the ı̂, ̂
basis. As Figure 3 shows:

(

r̂

φ̂

)

=

(

cosφ sinφ
− sinφ cosφ

) (

ı̂

̂

)

= R(φ)

(

ı̂

̂

)

(36)

Using the chain rule, the general velocity vector is given by:

v =
dr

dt
=

d

dt
(rr̂) =

dr

dt
r̂ + r

dr̂

dt
(37)

To evaluate (37), we need the derivatives of r̂ (and φ̂) with respect to time.
Using the definitions in (36) above, we obtain:

dr̂

dt
=

d

dt
(cosφı̂ + sinφ̂) = − sinφ

dφ

dt
ı̂ + cosφ

dφ

dt
̂ =

dφ

dt
φ̂ (38)
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dφ̂

dt
=

d

dt
(− sinφı̂ + cosφ̂) = − cosφ

dφ

dt
ı̂ − sinφ

dφ

dt
̂ = −

dφ

dt
r̂ (39)

Combining this with equation (37) gives:

v = ṙr̂ + rφ̇ φ̂ (40)

Notice that we have used the convenient notation of putting a dot over a
symbol to denote time derivative.

Taking another derivative of (40) with respect to time shows that the
acceleration is given by:

a = v̇ = r̈ =
(

r̈ − rφ̇2
)

r̂ +
(

rφ̈+ 2ṙφ̇
)

φ̂ (41)

(40) can be used to show that the kinetic energy T of the reduced mass in
polar coordinates is given by:

T =
1

2
µ v2 =

1

2
µ v · v =

1

2
µ (ṙ2 + r2φ̇2) (42)

Similarly, the magnitude of the angular momentum L of the reduced mass
µ is given in polar coordinates by:

|L| = |r × µv| = l = µr2φ̇ (43)

Since the angular momentum is a constant in central force problems, it’s
magnitude l is also constant. Therefore (43) can be used to rewrite differential
equations, getting rid of φ̇’s in favor of the variable r and the constant l.

Kepler’s second law says that the areal velocity of a planet in orbit is
constant in time. This is equivalent to equation (43). To see why, read in
section 8.3 of Marion and Thornton, page 294, from equation 8.10 to the
bottom of the page.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Work through the steps deriving equations (41), (42), and (43) from
(40).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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9 EQUATIONS OF MOTION: F = µa

The problem is now to the point where we can write the equations of motion
in a form we can solve. However, the importance of the preceding sections
cannot be stressed enough. The strategies that we used are important to the
success of problem solving in many complicated physics situations. Drawing
a picture, exploiting symmetries, choosing a convenient origin, and using the
most appropriate coordinate system all combine to make the analysis as easy
as possible. These and other tricks should always be regarded as a good
beginning to any problem.

Newton’s second law, reduced and modified for our specific problem is:

f(r)r̂ = µ r̈ = µ
(

(r̈ − rφ̇2)r̂ + (rφ̈+ 2ṙφ̇)φ̂
)

(44)

The vector equation breaks up, in polar coordinates, into two coupled differ-
ential equations for r(t) and φ(t):

f(r) = µ (r̈ − rφ̇2) (45)

0 = µ (rφ̈+ 2ṙφ̇) (46)

Equation (46) is just the polar coordinate statement of angular momen-
tum conservation, which we have already discussed, i.e.:

0 = r µ (rφ̈+ 2ṙφ̇) =
d

dt

(

µ r2φ̇
)

=
dl

dt
(47)

(To derive verify the equalities in (47) it is easiest to work from right to left!)
Therefore

µr2φ̇ = l = constant (48)

(48) can be solved for φ̇ and used in (45) to obtain a messy, second order
ODE for r(t):

r̈ =
l2

µ2r3
+

1

µ
f(r) (49)

In principle, we could now insert the particular form of f(r) we are con-
cerned with, solve equation (49) for r as a function of t, and insert this
value in (48) and solve for φ(t). We would then have solved the equations of
motion for r, and φ, parameterized by the time t. In practice, for any but
the simplest forms of f(r), it is impossible to solve the differential equations
analytically. Computers to the rescue! On Day 4, you will use a Maple work-
sheet which will allow you to explore numerical solutions for some important
physical examples.
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10 SHAPE OF THE ORBIT

If we are only interested in the shape of the orbit, we can do something
simpler than solving the equations of motion for r and φ as functions of t;
we can solve for the shape of the orbit, i.e. instead of using the variable t as
a parameter in (49), we will use the variable φ and solve for r(φ). To do this,
we need to change the time derivatives into φ derivatives.

d

dt
=

dφ

dt

d

dφ
= φ̇

d

dφ
=

&

µr2

d

dφ
(50)

It turns out that the differential equation which we obtain will be much
easier to solve if we also change independent variables from r to

u = r−1 (51)

(There is no way that you could guess this, yourself.) Therefore,

dr

dt
=

&

µr2

dr

dφ
= −

&

µ

d r−1

dφ
= −

&

µ

du

dφ
(52)

(To verify the second equality, work from right to left.) Then the second
derivative is given by

d2r

dt2
=

d

dt

dr

dt
=
&

µ
u2 d

dφ

(

−
&

µ

du

dφ

)

= −
&2

µ2
u2 d2u

dφ2
(53)

Plugging (51) and (53) into (49), dividing through by u2, and rearranging,
we obtain the orbit equation

d2u

dφ2
+ u = −

µ

&2
1

u2
f

(

1

u

)

(54)

For the special case of inverse square forces f(r) = −k/r2 (spherical
gravitational and electric sources), it turns out that the right-hand side of
(54) is constant so that the equation is particularly easy to solve. First
solve the homogeneous equation (with f(r) = 0), which is just the harmonic
oscillator equation with general solution

uh = A cos(φ+ δ) (55)
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Add to this any particular solution of the inhomogeneous equation (with
f(r) = −k/r2). By inspection, such a solution is just

up =
µ k

&2
(56)

so that the general solution of (54) for an inverse square force is

r−1 = u = uh + up = A cos(φ+ δ) +
µ k

&2
(57)

Then solving for r in (57) we obtain

r =
1

µk
!2 + A cos(φ+ δ)

=
!2

µk

1 + A′ cos(φ+ δ)
(58)

You can explore how the graph of this equation depends on the various
parameters using the Maple worksheet conics.mws
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Go through all the steps in the derivation of (54) from (49). (49)
is the same as equation 8.18 in section 8.4 on page 296 of Marion
and Thornton; an alternative derivation of (54) can be found following
equation 8.18. Use whichever technique is easiest for you to follow, but
make sure you understand at least one. This kind of change of variables
is very common in physics.

2. How do the physical constants in (58) correspond to the mathematical
constants: amplitude α, phase δ, and the eccentricity ε, from the Maple
worksheet conics.mws?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 EQUATIONS OF MOTION: E = T + U

Another theoretical tool we can use to arrive at an equation for the orbit
is conservation of energy. The central force F is conservative and can be
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derived from a potential U(r) which depends only on the distance from the
center of mass (see practice problem 1.2):

F = −∇U = −
∂U(r)

∂r
(59)

The statement of energy conservation:

E = T + U (60)

becomes, using (42), (43), and (59):

E =
1

2
µ ṙ2 +

1

2

l2

µr2
+ U(r) (61)

(61) can be solved for ṙ to give:

ṙ = ±

√

2

µ
(E − U(r)) −

l2

µ2r2
(62)

(62) is an equivalent alternative to (49) as an equation of motion for r(t).
You might be surprised that (62) is a first order differential equation, whereas
(49) is second order. This means that only one initial condition is required
for the solution of (62) whereas two are needed for the solution of (49).
There is nothing surprising going on here. We have already provided the
extra information (the extra initial condition) by specifying the constant
total energy E.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. (Challenging) Show that the equation of motion derived from Newton’s
Law (49) is equivalent to the equation of motion derived from energy
conservation (62). Hint: Multiply (49) by 2ṙ dt and integrate both
sides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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12 EVERYTHING ELSE

You should now work through sections 8.4-8.7 of Taylor. Pay particular
attention to the concept of the effective potential.

There are many areas left to explore if you are interested: questions of
the stability of orbits under perturbations, the precession of the orbit, and
whether it is open or closed. There are many interesting examples, even
within our solar system, that show the varied and unique outcomes of cen-
tral force interactions: Lagrange points, resonant orbits, horseshoe orbits,
to name a few. There are also other types of central forces. The repul-
sive inverse square force was very important to early atomic experiments.
Rutherford bombarded a lattice of gold with alpha particles (helium nuclei).
The repulsive electrostatic interaction can be handled easily by our preced-
ing analysis. The theory fit experiment well until the alpha particle energies
became high enough to overcome the effective potential and hit the nucleus
head-on.

Many of the ideas in our analysis are handled nicely by the Lagrangian
formalism which you will study in the Classical Mechanics Capstone. La-
grangian mechanics provides yet another starting point for obtaining the
equations of motion. The ideas of symmetry and conservation are more
easily recognized and handled within that context, which proves to be very
powerful in more complicated situations. When you reach that point, remem-
ber some of the techniques we used here and then appreciate the simplicity
and beauty provided by the new viewpoint.
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