Central Forces Homework 4

Due 03/09/12

PRACTICE:

1. (McIntyre 7.5)

An angular momentum system with $l=1$ is prepared in the state:

$$
|\psi\rangle=\frac{2}{\sqrt{29}}|1,1\rangle+i \frac{3}{\sqrt{29}}|1,0\rangle-\frac{4}{\sqrt{29}}|1,-1\rangle
$$

(a) What are the possible results of a measurement of the angular momentum component L_{z}, and with what probabilities would they occur?
(b) What are the possible results of a measurement of the angular momentum component L_{x}, and with what probabilities would they occur?
(c) Plot histograms of the predicted measurement results from parts (a) and (b).

REQUIRED:

2. (McIntyre 7.10) Use the separation of variables procedure in Appendix E on the angular equation (Eq. 7.80 on p. 217) to obtain Eq. 7.82 and Eq. 7.83 for the polar and azimuthal angles.
3. (McIntyre 7.13)

Consider the normalized state $|\Phi\rangle$ for a quantum mechanical particle of mass μ constrained to move on a circle of radius r_{0}, given by:

$$
|\Phi\rangle=\frac{\sqrt{3}}{2}|3\rangle+\frac{i}{2}|-2\rangle
$$

(a) What is the probability that a measurement of L_{z} will yield $2 \hbar$? $3 \hbar$?
(b) What is the probability that a measurement of energy will yield $E=\frac{2 \hbar^{2}}{I}$?
(c) What is the expectation value of L_{z} in this state?
(d) What is the expectation value of the energy in this state?
4. (McIntyre 7.15)

Consider the normalized wavefunction $\Phi(\phi)$ for a quantum mechanical particle of mass μ constrained to move on a circle of radius r_{0}, given by:

$$
\Phi(\phi)=\frac{N}{2+\cos (3 \phi)}
$$

where N is the normalization constant.
(a) Find N.
(b) Plot this wave function.
(c) What is the expectation value of L_{z} in this state?
5. Attached, you will find a table showing different representations of physical quantities associated with a particle-in-a-box. Make a similar table for a particle confined to a ring. Include all of the following information.

- Hamiltonian
- Eigenvalues of Hamiltonian
- Normalized eigenstates of Hamiltonian
- Coefficient of the nth eigenstate
- Probability of measuring E_{n}
- Expectation value of Hamiltonian
- Z-component of angular momentum
- Eigenvalues of z-component of angular momentum
- Eigenstates of z-component of angular momentum
- Coefficient of mth state of z-component of angular momentum
- Probability of measuring $m \hbar$ for z-component of angular momentum
- Expectation value of z-component of angular momentum

Particle in a Box

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian	\hat{H}	$-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$	$\left(\begin{array}{cccc}E_{1} & 0 & 0 & \cdots \\ 0 & E_{2} & 0 & \cdots \\ 0 & 0 & E_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$
Eigenvalues of Hamiltonian	$E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$	$E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$	$E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$
Normalized Eigenstates of Hamiltonian	$\|n\rangle$	$\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$	$\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right), \quad\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right), \ldots$
Coefficient of $n^{\text {th }}$ energy eigenstate	$c_{n}=\langle n \mid \psi\rangle$	$c_{n}=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \psi(x) d x$	$\left(\begin{array}{llll}0 & \cdots & 1 & \cdots\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n} \\ \vdots\end{array}\right)$
Probability of measuring E_{n}	$P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\|\langle n \mid \psi\rangle\|^{2}$	$P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\left\|\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \psi(x) d x\right\|^{2}$	$P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\left\|\left(\begin{array}{llll}0 & \cdots & 1 & \cdots\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n} \\ \vdots\end{array}\right)\right\|$
Expectation value of Hamiltonian	$\langle\psi\| H\|\psi\rangle=\sum_{n}\left\|c_{n}\right\|^{2} E_{n}$	$\langle\psi\| H\|\psi\rangle=\int_{0}^{L} \psi^{*}(x) \hat{H} \psi(x) d x$	$\langle\psi\| H\|\psi\rangle=\left(\begin{array}{lll}c_{1}^{*} & c_{2}{ }^{*} & \cdots\end{array}\right)\left(\begin{array}{ccc}E_{1} & 0 & \cdots \\ 0 & E_{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right)\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots\end{array}\right)$

Particle on a Ring

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian			
Eigenvalues of Hamiltonian			
Normalized Eigenstates of Hamiltonian			
Coefficient of $m^{\text {t }}$ energy eigenstates			
Probability of measuring E_{m}			
Expectation value of Hamiltonian			

Particle on a Ring

Operator for z- component of angular momentum			
Eigenvalues of z- component of angular momentum			
Normalized Eigenstates of z- component of angular momentum			
Coefficient of $m^{t h}$ eigenstates of z-component of angular momentum			
Probability of measuring $m \hbar$ for z- component of angular momentum			
Expectation value of z-component of angular momentum			

