1. (a) \[F_1 = \frac{m_1 F_1}{d-x} \quad \text{and} \quad F_2 = \frac{m_2 F_2}{d-x} \]

\[F_1 = \frac{G m_1}{x^2} \quad \text{and} \quad F_2 = \frac{G m_2}{(d-x)^2} \]

\[m_1 (d-x)^2 = m_2 x^2 \]

\[\frac{m_1 (d-x)}{m_2} = \frac{x}{d-x} \quad \text{or} \quad x = \frac{d}{1 + \sqrt{m_1/m_2}} \]

(b) Moves back to equilibrium point, if displaced in y-n direction, moves away if displaced in x direction.

2. \[F_1 = -\frac{G m_1 m_2}{d^2} \hat{e} \]

\[F_3 = -\frac{G m_2 m_3}{d^2} \hat{j} \]

\[F_4 = \frac{G m_2 m_4}{(\sqrt{2}d)^2} \left(-\frac{\sqrt{2}}{2} \hat{e} - \frac{\sqrt{2}}{2} \hat{j} \right) \]

\[F_1 + F_3 + F_4 = \frac{G m_2}{d^2} \left[-(m_1 + \frac{\sqrt{2}}{4} m_4) \hat{e} - (m_2 + \frac{\sqrt{2}}{4} m_4) \hat{j} \right] \]

3. (a) \[F = m_2g = (1\text{kg})(9.8\text{N/kg}) = 9.8\text{N} \]

(b) \[F = \frac{G m M_5}{(\Delta s - R)^2} = \frac{(6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2)(1\text{kg})(1.0\text{kg})(1.96 \times 10^{30} \text{kg})}{(1.50 \times 10^8 \text{m} - 6.27 \times 10^6 \text{m})^2} = 6.00 \times 10^{-9} \text{N} \]

(c) \[F = \frac{G m M_m}{(\Delta m - R)^2} = \frac{(6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2)(1\text{kg})(2.36 \times 10^{22} \text{kg})}{(3.82 \times 10^8 \text{m} - 6.27 \times 10^6 \text{m})^2} = 0.000035 \text{N} \]
\[\Delta F = \frac{G M M_s}{(d_0 - R_e)^2} - \frac{G M M_s}{d^2} = \frac{G M M_s}{d^2} \left[\frac{1}{(1 - \frac{R_e}{d})^2} - \frac{1}{(1 + \frac{R_e}{d})^2} \right] \]

\[\approx \frac{G M M_s}{d^2} \left(4 \frac{R_e}{d} \right) = 1.0 \times 10^{-6} \text{ N} \]

\[\Delta F = \frac{G M M_M}{d^2} \left(4 \frac{R_e}{d} \right) = 2.2 \times 10^{-6} \text{ N} \]

Note that (from #3), the Sun's force is stronger but the force difference is larger for the Moon (which is why the moon has a greater effect on tides).

By the 2nd shell theorem, all the mass beyond radius \(r \) does not contribute to the gravitational force at \(r \).

By the first shell theorem, all the mass inside \(r \) can be replaced by a point mass at the center.

Assuming the Earth to be of uniform density, the fraction of the mass inside radius \(r \) is

\[M_e = \frac{4}{3} \pi r^3 \]

\[M_e = \frac{M_e}{R_e^3} \]

\[F = \frac{G m}{r^2} \frac{M_e r^3 / R_e^3}{r^2} = \frac{G M e m}{R_e^2} r \]
The mass of the hollow sphere is $M = \frac{4}{3} \pi (\frac{3}{2} R)^3 M = \frac{7}{8} M$.

$$F = G \frac{m (\frac{7}{8} M)}{d^2}$$

Let body $A = \text{original solid sphere}$

$B = \text{sphere with hole}$

$C = \text{sphere of radius} \frac{R}{2} \text{ removed to make hole}$.

$A = B + C$

$$F_B = F_A - F_C = \frac{G m M}{d^2} - \frac{G m (\frac{7}{8} M)}{(d-R/2)^2}$$

$$F = -G \frac{M m e}{R_e^2} \Rightarrow -mg \hat{r} = \hat{g} = G \frac{M m e}{R_e^2}$$

$$g' = \frac{G m e}{(R e)^2} = \frac{6 m e}{R_e^3} = \frac{4}{3} g = \frac{4}{3} \times 9.8 \text{ m/s}^2$$

$$g' = 39.2 \text{ m/s}^2$$