Chapter 1.

Laser: Theory and Applications

Reading: Siegman, Chapter 6 and 7
Laser Basics

Light Amplification by Stimulated Emission of Radiation

Stimulated emission

Population inversion \((N_1 > N_0) \Rightarrow \text{laser, maser}\)

Transition rate for stimulated emission

\[
\bar{W}_{01} = \frac{4\pi^2}{m^2 c} \left(\frac{e^2}{4\pi \varepsilon_0} \right) \frac{I(\omega_{01})}{\omega_{01}^2} \left| M_{01}(\omega_{01}) \right|^2 \propto I(\omega_{01})
\]

Incident light intensity

Pumping (optical, electrical, etc.) for population inversion

High reflector

Gain medium

Out coupler

Optical cavity
Ruby Laser

- This system is a **three level laser** with lasing transitions between E_2 and E_1.
- The excitation of the Chromium ions is done by **light pulses** from flash lamps (usually Xenon).
- The **Chromium ions** absorb light at wavelengths around 545 nm (500-600 nm). As a result the ions are transferred to the excited energy level E_3.
- From this level the ions are going down to the **metastable energy level** E_2 in a **non-radiative transition**. The energy released in this non-radiative transition is transferred to the **crystal vibrations** and changed into **heat** that must be removed away from the system.
- The lifetime of the metastable level (E_2) is about 5 msec.

http://web.phys.ksu.edu/vqm/laserweb/Ch-6/C6s2t1p2.htm
He-Ne Laser

Energy level diagram

Excimer Lasers

- Gain medium: inert gas (Ar, Kr, Xe etc.) + halide (Cl, F etc.)
- Excited state is induced by an electrical discharge or high-energy electron beams.
- Laser action in an excimer molecule occurs because it has a bound (associative) excited state, but a repulsive (disassociative) ground state.

<table>
<thead>
<tr>
<th>Excimer</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>157 nm</td>
</tr>
<tr>
<td>ArF</td>
<td>193 nm</td>
</tr>
<tr>
<td>KrF</td>
<td>248 nm</td>
</tr>
<tr>
<td>XeCl</td>
<td>308 nm</td>
</tr>
</tbody>
</table>

Applications
- Marking
- Micromachining
- Laser Ablation
- Laser Annealing
- Surface Structuring
- Laser Vision Correction
- Optical Testing and Inspection
- Pulsed Laser Deposition
- Fiber Bragg Gratings

http://tftlcd.khu.ac.kr/research/poly-Si/chapter4.html
Semiconductor Lasers – laser diodes

Band structure near a semiconductor p-n junction

Diode laser structure

Vertical cavity surface emitting lasers (VCSEL) structure

Specific Laser Systems

Laser media:
gas, dye, chemical, excimer, solid-state, fiber, semiconductor, free-electron

Longitudinal Modes in an Optical Cavity

Boundary condition:

\[
\begin{align*}
L &= \frac{\lambda}{2} = \frac{c\tau}{2} = \frac{\pi c}{m \omega} \\
\Rightarrow \quad \lambda &= \frac{2L}{m}, \quad \nu = \frac{c}{2L} m, \quad \omega = \frac{\pi c}{L} m
\end{align*}
\]

Round-trip time of flight: \(T = \frac{2L}{c} = m\tau \)

Typical laser cavity: \(L = 1.5 \text{ m}, \lambda = 0.75 \text{ \mu m} \)

\[
T = \frac{2L}{c} = \frac{3 m}{3 \times 10^8 \text{ m/sec}} = 10^{-8} \text{ sec} = 10 \text{ nsec}
\]

\[
\Rightarrow \quad \nu_R = \frac{1}{T} = 10^8 \text{ Hz} = 100 \text{ MHz}
\]

\[
m = \frac{2L}{\lambda} = \frac{3 m}{0.75 \times 10^{-6} \text{ m}} = 4 \times 10^6 = 4 \text{ milion!!}
\]
Single mode

\[I(t) = |\cos \omega_0 t|^2 = |\cos t|^2 \]
Cavity Quality Factors, Q_c

End mirror $R \approx 1$ \quad L \quad Out coupler $T = 1 \sim 5\%$

Energy loss by reflection, transmission, etc.

$E(\omega) = \int_{0}^{\infty} E_0 e^{-\delta_c t/2T} e^{-i\omega_0 t} e^{i\omega t} dt$

$= \frac{E_0}{-i(\omega - \omega_0) + \delta_c / 2T}$

$|E(\omega)|^2 = \frac{E_0^2}{(\omega - \omega_0)^2 + \delta_c^2 / 4T^2}$

Emission spectrum

ω_0 $\delta_c / T = \frac{\omega}{Q_c}$

Lorentzian
Energy of circulating EM wave, $I_{circ}(t)$

$$I_{circ}(t) = I_{circ}(0) \times \exp\left[-\delta_c \left(\frac{t}{T}\right)\right], \quad T = \frac{2L}{c}$$

: round-trip time of flight

Number of round trips in t

$$\Rightarrow I_{circ}(t) = I_{circ}(0) \times \exp\left[-\frac{\omega}{Q_c} t\right]$$

where

$$Q_c = \frac{\omega T}{\delta_c} = \frac{4\pi L}{\lambda} \frac{1}{\delta_c}$$

Q-factor of a RLC circuit

$$Q = \frac{\omega}{\Delta \omega} = \frac{\omega L}{R}$$

Typical laser cavity: $L = 1$ m, $\lambda = 0.8 \, \mu$m, $\delta_c = 0.01$ ($\sim 1\%$ loss/RT)

$$Q_c = \frac{4\pi}{0.8 \times 10^{-6}} \frac{1}{0.01} \approx 1.6 \times 10^9 \quad \Rightarrow \quad \Delta \omega \approx 10^6 \, Hz$$
Two Level Rate Equations and Saturation

Two Level Rate Equation

\[
\frac{dN_1(t)}{dt} = -\frac{dN_2(t)}{dt} = -W_{12}N_1(t) + (W_{21} + \gamma_{21})N_2(t)
\]

\[
= -W_{12}[N_1(t) - N_2(t)] + \gamma_{21}N_2(t)
\]

Total number of atoms: \(N = N_1(t) + N_2(t) = \text{constant} \)

Population difference: \(\Delta N(t) = N_1(t) - N_2(t) \)

\[
\frac{d}{dt} \Delta N(t) = -2W_{12}[N_1(t) - N_2(t)] + 2\gamma_{21}N_2(t)
\]

\[
= -2W_{12}[N_1(t) - N_2(t)] - \gamma_{21}[N_1(t) - N_2(t) - N_1(t) - N_2(t)]
\]

\[
\frac{d}{dt} \Delta N(t) = -2W_{12}\Delta N(t) - \frac{\Delta N(t) - N}{T_1}
\]

\[\gamma_{21} = \frac{1}{T_1} \]: non-radiative decay rate
Steady-State Atomic Response: Saturation

\[
\frac{d}{dt} \Delta N(t) = 0 = -2W_{12} \Delta N(t) - \frac{\Delta N(t) - N}{T_1}
\]

\[
\Delta N = \Delta N_{ss} = \frac{N}{1 + 2W_{12}T_1}
\]

\[
\frac{\Delta N_{ss}}{N} = \frac{1}{1 + W_{12}/W_{sat}}, \quad W_{sat} \equiv \frac{1}{2T_1}
\]

Gain coefficient in laser materials

\[
\alpha_m \propto \Delta N
\]

\[
\alpha_m(I) = \frac{\alpha_{m0}}{1 + I/I_{sat}}
\]
Transient Two-Level Solutions

\[\frac{d}{dt} \Delta N(t) = -2W_{12} \Delta N(t) - \frac{\Delta N(t) - N}{T_1} = -\left(2W_{12} + \frac{1}{T_1}\right) \Delta N(t) + \frac{N}{T_1} \]

Thus, we have

\[\Delta N(t) = \Delta N_{ss} + A \exp\left[-\left(2W_{12} + \frac{1}{T_1}\right)t\right], \quad \Delta N_{ss} = \frac{N}{1 + 2W_{12}T} \]

Initial population difference at \(t = 0 \): \(\Delta N(0) = \Delta N_{ss} + A \)

\[\Delta N(t) = \frac{N}{1 + 2W_{12}T} + \left[\Delta N(0) - \frac{N}{1 + 2W_{12}T}\right] \exp\left[-\left(1 + 2W_{12}T_1\right) \frac{t}{T_1}\right] \]

Transient saturation behavior following sudden turn-on of an applied signal
Two-Level Systems with Degeneracy

Stimulated transition rates: \(g_1 W_{12} = g_2 W_{21} \)

Rate equation:
\[
\frac{dN_1(t)}{dt} = - \frac{dN_2(t)}{dt} = -W_{12}N_1(t) + (W_{21} + \gamma_{21})N_2(t)
\]

Population difference:
\[
\Delta N(t) \equiv \left(\frac{g_2}{g_1} \right) N_1(t) - N_2(t)
\]

Effective signal-stimulated transition probability:
\[
W_{\text{eff}} \equiv \frac{1}{2}(W_{12} + W_{21})
\]

Rate equation:
\[
\frac{d}{dt} \Delta N(t) = -2W_{\text{eff}} \Delta N(t) - \frac{\Delta N(t) - N}{T_1}
\]

Atomic time constants: \(T_1 \) and \(T_2 \)

\(T_1 \): longitudinal (on-diagonal) relaxation time
- population recovery or energy decay time

\(T_2 \): dephasing time, transverse (off-diagonal) relaxation time
- time constant for dephasing of coherent macroscopic polarization
Steady state population:

\[N_4 = \frac{W_p \tau_4}{1 + W_p \tau_4} N_1 \approx W_p \tau_4 N_1, \quad \text{if } W_p \tau_4 << 1 \]

Normalized pumping rate

Rate equation for level 4

\[\frac{dN_4}{dt} = W_p (N_1 - N_4) - (\gamma_{43} + \gamma_{42} + \gamma_{41})N_4 \]

\[= W_p (N_1 - N_4) - \frac{N_4}{\tau_4}, \]

where \(\frac{1}{\tau_4} \equiv \gamma_4 = \gamma_{43} + \gamma_{42} + \gamma_{41} \)

Four-level pumping analysis

Steady-State Laser Pumping and Population Inversion
Rate equations for level 2 and 3

\[
\frac{dN_3}{dt} = \gamma_{43} N_4 - (\gamma_{32} + \gamma_{31}) N_3 = \frac{N_4}{\tau_{43}} - \frac{N_3}{\tau_3}
\]

\[
N_3 = \frac{\tau_3}{\tau_{43}} N_4
\]

at steady state

In a good laser system, \(\tau_3 >> \tau_{43} \) so that \(N_3 >> N_4 \)

\[
\frac{dN_2}{dt} = \gamma_{42} N_4 + \gamma_{32} N_3 - \gamma_{21} N_2 = \frac{N_4}{\tau_{42}} + \frac{N_3}{\tau_{32}} - \frac{N_2}{\tau_{21}}
\]

\[
N_2 = \left(\frac{\tau_{21}}{\tau_{32}} + \frac{\tau_{43} \tau_{21}}{\tau_{42} \tau_3} \right) N_3 = \beta N_3
\]

where \(\beta \equiv \frac{\tau_{21}}{\tau_{32}} + \frac{\tau_{43} \tau_{21}}{\tau_{42} \tau_3} \)

If \(\beta < 1 \), \(N_2 < N_3 \) : population inversion on the \(3 \rightarrow 2 \) transition

In a good laser system, \(\gamma_{42} \approx 0 \) so that the level 4 will relax primarily into the level 3.

\[
\beta \approx \frac{\tau_{21}}{\tau_{32}} \quad \text{condition for population inversion}
\]

\[
\beta \equiv \frac{N_2}{N_3} \approx \frac{\tau_{21}}{\tau_{32}} << 1
\]
Fluorescent quantum efficiency

The number of fluorescent photons spontaneously emitted on the laser transition divided by the number of pump photons absorbed on the pump transitions when the laser material is below threshold

\[
\eta = \frac{\gamma_{43}}{\gamma_4} \times \frac{\gamma_{rad}}{\gamma_3} = \frac{\tau_4}{\tau_{43}} \times \frac{\tau_3}{\tau_{rad}}
\]

Fraction of the total atoms excited to level 4 relax directly into the level 3

Fraction of the total decay out of level 3 is purely radiative decay to level 2

Four level population inversion

\[N = N_1 + N_2 + N_3 + N_4\]

\[
\frac{N_3 - N_2}{N} \approx \frac{(1-\beta)\eta W_p \tau_{rad}}{1 + (1 + \beta) \eta W_p \tau_{rad}} \approx \frac{\eta W_p \tau_{rad}}{1 + \eta W_p \tau_{rad}}
\]

In a good laser system, \(\tau_{rad} \gg \tau_{43}, \beta \rightarrow 0.\)

\[
\frac{N_3 - N_2}{N} \approx \frac{(1-\beta)\eta W_p \tau_{rad}}{1 + (1 + \beta) \eta W_p \tau_{rad}} \approx \frac{\eta W_p \tau_{rad}}{1 + \eta W_p \tau_{rad}}
\]
Laser gain saturation analysis

Pumping transition
\[\frac{dN_3}{dt} \bigg|_{pump} = W_p (N_0 - N_3) \approx W_p N_0 \approx W_p N \]

Effective pumping rate: \(R_p = \eta_p W_p N_0 \)

quantum efficiency \(E_3 \rightarrow E_2 \)

Rate equations for laser levels 1 and 2: \(\gamma_2 = \gamma_{21} + \gamma_{20} \)

\[\frac{dN_2}{dt} = R_p - W_{\text{sig}} (N_2 - N_1) - \gamma_2 N_2 \]

\[\frac{dN_1}{dt} = W_{\text{sig}} (N_2 - N_1) + \gamma_{21} N_2 - \gamma_1 N_1 \]

\[N_1 = \frac{W_{\text{sig}} + \gamma_{21}}{W_{\text{sig}} (\gamma_1 + \gamma_{20}) + \gamma_1 \gamma_2} R_p \]

\[N_2 = \frac{W_{\text{sig}} + \gamma_1}{W_{\text{sig}} (\gamma_1 + \gamma_{20}) + \gamma_1 \gamma_2} R_p \]
Gain saturation behavior

\[\Delta N_{21} = N_2 - N_1 = \left(\frac{\gamma_1 - \gamma_{21}}{\gamma_1 \gamma_2} \right) R_p \times \frac{1}{1 + \left[(\gamma_1 + \gamma_{20}) / \gamma_1 \gamma_2 \right] W_{\text{sig}}} \]

\[= \Delta N_0 \frac{1}{1 + W_{\text{sig}} \tau_{\text{eff}}} \]

Small signal or unsaturated population inversion

\[\Delta N_0 = \left(\frac{\gamma_1 - \gamma_{21}}{\gamma_1 \gamma_2} \right) R_p = \left(1 - \frac{\tau_1}{\tau_{21}} \right) \times R_p \tau_2 \]

Effective recovery time

\[\frac{1}{\tau_{\text{eff}}} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_{20}} \quad \text{or} \quad \tau_{\text{eff}} = \tau_2 \left(1 + \frac{\tau_1}{\tau_{20}} \right) \]

If \(\gamma_{20} \approx 0, \gamma_2 \approx \gamma_{21} \)

\[\Delta N_{21} = R_p (\tau_2 - \tau_1) \times \frac{1}{1 + W_{\text{sig}} \tau_2} \]

- Population inversion requires \(\tau_{21} > \tau_1 \).
- \(\Delta N_0 \propto R_p \times \tau_2 (1 - \tau_1 / \tau_2) \)
- If \(\tau_1 \to 0, \tau_{\text{eff}} \approx \tau_2 \).
- The saturation intensity of the inverted population is independent of \(R_p \).
Wave Propagation in an Atomic Medium

Wave equation in a laser medium

\[
\left[\nabla^2 + \omega^2 \mu \varepsilon \left(1 + \chi_{at} - i \sigma / \omega \varepsilon \right) \right] E(x, y, z) = 0
\]

atomic susceptibility

Ohmic loss

Plane wave approximation

\[
\left[\frac{d^2}{dz^2} + \beta^2 \left(1 + \chi_{at} - i \sigma / \omega \varepsilon \right) \right] E(z) = 0
\]

“Free-space” propagation constant: \(\beta = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{c} n = \frac{2\pi n}{\lambda} \)

Propagation factor: \(E(z) = E_0 e^{-\Gamma z} \)

\[
\Gamma^2 = -\beta^2 \left(1 + \chi_{at} - i \sigma / \omega \varepsilon \right)
\]

\[
\Gamma = i \beta \sqrt{1 + \chi_{at} - i \sigma / \omega \varepsilon} = i \beta \sqrt{1 + \chi'(\omega) + i \chi''(\omega) - i \sigma / \omega \varepsilon}
\]
Usually, $\chi_{at}, -i\sigma / \omega \varepsilon \ll 1$

$$\Gamma \approx i\beta \left[1 + \frac{1}{2} \chi'(\omega) + i \frac{1}{2} \chi''(\omega) - i \frac{\sigma}{2\omega \varepsilon} \right]$$

$$= i\beta + i \frac{1}{2} \beta \chi'(\omega) - \frac{1}{2} \beta \chi''(\omega) + \frac{\sigma}{2\varepsilon \nu}$$

$$= i\beta + i \frac{1}{2} \Delta \beta_m (\omega) - \alpha_m (\omega) + \alpha_0$$

Propagation of a $+z$ traveling wave

$$E(z, t) = \text{Re} \ E_0 \exp \left\{ i \omega t - i \left[\beta + \Delta \beta_m (\omega) \right] z \right\} + \left\{ \alpha_m (\omega) - \alpha_0 \right\} z$$

Phase shift by atomic transition

Gain by atomic transiton + ohmic loss

The effects of ohmic losses and atomic transition are included.
Propagation factors

\[\phi_{tot}(z, \omega) = \left[\beta + \Delta \beta_m(\omega) \right] z = n(\omega) \frac{\omega}{c} z \]

“free-space” Contribution

\[\beta(\omega) z \]

atomic phase-shift contribution \(\Delta \beta_m(\omega) z \)

atomic gain \(\alpha_m(\omega) z \)

\[\Delta \beta_m \propto \chi'(\omega) = \frac{a(\omega^2 - \omega_a^2)}{(\omega^2 - \omega_a^2)^2 + \Gamma^2 \omega^2} \]

\[\approx \frac{\chi'_0 \left[2(\omega - \omega_a)/\Gamma \right]}{1 + \left[2(\omega - \omega_a)/\Gamma \right]^2} \]
Single-Pass Laser Amplification

Laser gain formulas

Complex amplitude gain:
\[
g(\omega) \equiv \frac{E(L)}{E(0)} = \exp\left\{ -i[\beta + \Delta \beta_m(\omega)]L + [\alpha_m(\omega) - \alpha_0]L \right\}
\]
- **Total phase shift**
- **Amplitude gain or loss**

Power or intensity gain:
\[
G(\omega) \equiv \frac{I(L)}{I(0)} = |g(\omega)|^2 = \exp\left\{ 2[\alpha_m(\omega) - \alpha_0]L \right\}
\]
- \[= \frac{1}{2} \beta \chi''(\omega)\]

Lorenzian transition line shape:
\[
\chi''(\omega) = \frac{\chi''_0}{1 + \left[2(\omega - \omega_a)/\Delta \omega_a\right]^2}
\]
Power gain: \[G(\omega) = \exp \left\{ \frac{\omega L \chi''}{v} \times \frac{1}{1 + \left[2(\omega - \omega_a) / \Delta \omega_a\right]^2} \right\} \]

Power gain in decibels (dB):

\[G_{dB}(\omega) \equiv 10 \log_{10} G(\omega) = 4.34 \ln G(\omega) = \frac{4.34 \omega_a L}{v} \chi''(\omega) \]

Amplification bandwidth and gain narrowing

3-dB amplifier bandwidth: \[\Delta \omega_{3dB} = \Delta \omega_a \sqrt{\frac{3}{G_{dB}(\omega_a) - 3}} \]

Amplifier phase shift

Total phase shift: \[\phi_{tot}(z, \omega) = \left[\beta + \Delta \beta_m(\omega) \right] L = \frac{\omega L}{v} + \frac{\beta L}{2} \chi'(\omega) \]

Atomic transition phase shift:

\[\Delta \beta_m(\omega) L = \left(2 \frac{\omega - \omega_a}{\Delta \omega_a}\right) \times \alpha_m(\omega) L = \frac{G_{dB}(\omega_a)}{20 \log_{10} e} \times \frac{2(\omega - \omega_a) / \Delta \omega_a}{1 + \left[2(\omega - \omega_a) / \Delta \omega_a\right]^2} \]
Saturation of the population difference

Traveling wave: \[\frac{dI}{dz} = 2\alpha_m I = \Delta N_{\text{sat}} I \]

Stimulated transition cross-section

Population difference: \[\Delta N = \Delta N_0 \times \frac{1}{1 + W\tau_{\text{eff}}} = \Delta N_0 \times \frac{1}{1 + I / I_{\text{sat}}} \]

where \[2\alpha_m = \Delta N_{0}\sigma \]

\[\frac{1}{I(z)} \frac{dI(z)}{dz} = 2\alpha_m(z) = \frac{2\alpha_{m0}}{1 + I(z) / I_{\text{sat}}} \]

\[\int_{I_{\text{in}}}^{I_{\text{out}}} \left[\frac{1}{I} + \frac{1}{I_{\text{sat}}} \right] dI = 2\alpha_{m0} \int_0^L dz \]

unsaturated power gain

\[\ln\left(\frac{I_{\text{out}}}{I_{\text{in}}} \right) + \frac{I_{\text{out}} - I_{\text{in}}}{I_{\text{sat}}} = 2\alpha_{m0} L = \ln G_0 \]

where \[G_0 = \exp(2\alpha_{m0} L) \]
Overall power gain:

\[G \equiv \frac{I_{out}}{I_{in}} = G_0 \times \exp \left[- \frac{I_{out} - I_{in}}{I_{sat}} \right] \]

\[= G_0 \times \exp \left[- \frac{(G-1)I_{in}}{I_{sat}} \right] = G_0 \times \exp \left[- \frac{(G-1)I_{out}}{GI_{sat}} \right] \]

\[\rightarrow \frac{I_{in}}{I_{sat}} = \frac{1}{G-1} \ln \left(\frac{G_0}{G} \right) \quad \text{and} \quad \frac{I_{out}}{I_{sat}} = \frac{G}{G-1} \ln \left(\frac{G_0}{G} \right) \]

Power extraction and available power

\[I_{extr} \equiv I_{out} - I_{in} = I_{sat} \times \ln \left(\frac{G_0}{G} \right) \]

\[I_{avail} \equiv \lim_{G \to 1} \left[I_{sat} \times \ln \left(\frac{G_0}{G} \right) \right] = I_{sat} \times \ln(G_0) = 2\alpha_m L \times I_{sat} \]