Computational Physics:
- A Model for Physics Education
 - A Model for Future eTextBook

Rubin Landau
Physics Professor Emeritus
Oregon State University
physics.oregonstate.edu/~rubin

1st = Computational subatomic few-body systems (1966-2003)
2nd = Research developments (1988-) → broaden, ed dream

Computational Physics for Undergraduates
Supported by NSF (CCLI, CI-Team/EPIC), OSU, MSR
Contributing Group

- Manuel J Paez, University of Medellin, Colombia, SA, CoAuthor
- Cristian Bordeianu, University of Bucharest, Romania, CoAuthor [deceased]
- Paul Fink, Robyn Wangberg, CoAuthors
- Justin Elser, Chris Sullivan (system support)
- Sally Haerer, Saturo S. Kano (consultants, producers)
- Melanie Johnson (Unix Tutorials)
- Hans Kowallik (Computational Physics text, sounds, codes, LAPACK, PVM)
- Matthew Ervin Des Voigne (tutorials)
- Bertrand Laubsch (Java sound, decay simulation)
- Jon J Maestri (vizualizations, animations, quantum packets) [deceased]
- Al Stetz, David McIntyre (First Course)
- Juan Vanegas (OpenDX)
- Connelly Barnes (OOP, PtPlot)
- Phil Carter, Donna Hertel (MPI)
- Zlatko Dimcovic (Wavelets, Java I/O)
- Joel Wetzel (figures)
- Pat Cannan, Don Corliss, Corvallis High School (N-D Newton Raphson)
- Brian Schlatter
- Daniel Moore, (REU, Summer 98; Whitman College, WA)
- Justin Murray, (REU, Summer 98; Weber State University, Ogden, Utah
- Brandon Smith, (REU, Summer 97; Chico State/SDSC, CA)
- Paul D. Hillard, III (REU, Summer 96; Southern Univ, LA)
- Kevin Wolver, (REU, Summer 96; St Ambrose, IA)

And all the suffering students!
Preview (CP-2 Resource Letter, AJP)

1. Need Comp Science & Engr (data) √
2. Computational Courses √
3. Comp Physics Approach & Contents √
4. Journals
5. Conferences & Organizations
 b. SC Center & Grids
 c. CSE Ed Focus Groups √
6. Books √
7. Tools, Languages, Environments √
8. Parallel Computing
 a. Subroutine libes
 b. General DLs
Changing the Status Quo?

- If work paradigm changes, education paradigm changes.

- ... the greatest thing a human soul ever does in this world is to see something, and tell what it saw in a plain way. Hundreds of people can talk for one who can think, but thousands can think for one who can see.

- You never change something by fighting the existing reality. To change something, build a new model that makes the existing model obsolete.

© Rubin Landau, OSU
Premise: Need Δ (Phys Ed)

- Historical rapid Δ in how/what do science
 - \uparrow computer power & pervasiveness
- \Rightarrow Δ undergrad Ph Ed $>$ delivery (C tool)
 - Proper for P Ed Δ content: more C, Understand C
 - CSE view; Toolset freedom, Compt Science Think
- Physics Choice: like Classic Greek, or living?
 - “we are teaching the same things we taught 50 years ago”
 (APS/AAPT Taskforce on Grad Ed., R Diehl)
- PH(t) narrows, CSE do Fluids, MD, NLinear, data mining
- Simulation: Solitons, QCD, Stars, Black holes, Particle-Astro
Premise (cont): Need △ (Phys Ed)

- Physics = problem solving describing physical world
- From Basic principles + math tools
- Now + Computation = tool
- National Labs Research → CSE
- CSE Educational view
 - ⇔ research (creative) = Hi Quality education
 - = Physics Education + Research Attitude
 - ≠ Physics Education Research (inward)
Evidence for ∆ (Physics Ed) 1

Software

What's Important in 5-7 Years? (AIP)

- Software development
- Comp. programming
- Product design
- Modeling or simulation
- Knowledge of physics
- Scientific software
- Lab or instrumentation skills
- Physics principles
- Mathematical skills
- Synthesizing info
- Scientific problem solving

© Rubin Landau, CPUG
Evidence for Δ (Physics Ed) 2

- National Science Board: remain in field
 - 35% of CS, math BS (74% PhD)
 - 22% of physical, biological (52%)
 - \neq bad thing!

\Rightarrow Undergrad Physics overemphasize Physics!
 - = weaker preparation for career
 - "In the new economy, computer science isn't an optional skill"
 B. Obama, 2016
Evidence for Δ (Physics Ed) 3

- Number US STEM grads decreasing
- Yet Numb ≠ issue!, $t_{HW} = 24\text{hr} \rightarrow 15\text{ hr}$
- Bristol Comp Ph Exam: 75% (1990) $\rightarrow 50\%$ (2000)
- Though entrance grades increased (B \rightarrow A)
Where Do Physics BS's Go?

Evidence for Δ (Physics Ed) 4
Evidence for \(\Delta \) (Science Ed)

- RHL Survey (Y&L)
- CSE, CP ~ balance
- Small sample
- Stereotypes
- PH Ed: imbalance?

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th>CSE</th>
<th>CP</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>31</td>
<td>29</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>Application</td>
<td>17</td>
<td>28</td>
<td>28</td>
<td>45</td>
</tr>
<tr>
<td>Math</td>
<td>12</td>
<td>23</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Comp</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>
What = CP, How CP

- Problem solving (why do P, what P do)
- Learn by doing individual Projects
- Over-shoulder teach (lectures?)
- Practical ≠ “Theory of CP” (grad, math); doer
- CS + Math + physics in context
- More efficient, effective approach to science Ed
- ok ↓ # “physics” time
- Compiled language
 - see algorithm (eqtns)
 - bare bone codes given
- “I am not a bigot!” (Python, packages)
President’s Info Tech Advisory Committee:
CS departments alone can’t meet need, not diverse, “computational science indispensable in every sector,… need be recognized by governments & universities”

Changing Physics Courses May help
BS in CP @ OSU

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soph (45)</td>
<td>Intro CS II (CS) Vector Calc II (MTH) Gen Phys II Writing II</td>
<td>Discrete Math (MTH) Infinite Series (MTH) Gen Phys III Perspective</td>
<td>Scientific Comptg II (PH) App Diff Eqs (MTH) Intro Mod Phys Linear Algebra (MTH)</td>
</tr>
<tr>
<td>Jr (44)</td>
<td>CP I (PH) Symmetries (PH) Oscillations (PH) Vector Fields (PH) Writing III CP Seminar</td>
<td>CP II (PH) Data Structures (CS) 1D Waves (CS) Quantum Measures (PH) Central Forces (PH) Elective</td>
<td>Class Mech (PH) Quantm Mech (PH) Perspective Statistics (MTH) Biology</td>
</tr>
</tbody>
</table>

Real computation across the curriculum
Not 1 course, not just our view
Use Available & New Courses < 7 years
Computational Degree Programs

Abbassi, Swanson, Epic, Mariasingam, L

≈ 5x(2001)

<table>
<thead>
<tr>
<th>Computational Physics</th>
<th>Computational Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Houghton C</td>
<td>1. Arizona State</td>
</tr>
<tr>
<td>2. Illinois State</td>
<td>2. CUNY Brooklyn</td>
</tr>
<tr>
<td>4. SUNY Buffalo</td>
<td>4. Missouri So State</td>
</tr>
<tr>
<td>5. Chris Newport (BS/MS+CS)</td>
<td>5. Rice</td>
</tr>
<tr>
<td>Computational Science</td>
<td>Computational Biology</td>
</tr>
<tr>
<td>2. SUNY Brockport</td>
<td>2. U Pennsylvania</td>
</tr>
<tr>
<td>3. Stevens Inst Tech</td>
<td>4. UC Berkeley</td>
</tr>
<tr>
<td>4. UC Berkeley</td>
<td>5. Rice</td>
</tr>
<tr>
<td>Computational Biology</td>
<td>Foreign Programs</td>
</tr>
<tr>
<td>3. National U Singapore (CSE)</td>
<td>8. U Waterloo (CSE)</td>
</tr>
<tr>
<td>4. Trinity C, Dublin (CP)</td>
<td>9. Utrecht U (CSE)</td>
</tr>
<tr>
<td>5x(2001)</td>
<td></td>
</tr>
</tbody>
</table>
Other UG Computational Programs

What's in a name? That which we call a rose by any other name would smell as sweet.

Minor, Concentration, Track, Emphasis, Option, Focus (23) (all politics are local)

<table>
<thead>
<tr>
<th>Computational Physics</th>
<th>Computational Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Penn State Erie</td>
<td>3. Old Dominion</td>
</tr>
<tr>
<td>5. U Arkansas</td>
<td>4. RPI</td>
</tr>
<tr>
<td>Computational Mathematics</td>
<td>5. Salve Regina</td>
</tr>
<tr>
<td>2. San Diego State (App & CM)</td>
<td>7. U Wisconsin Eau Claire</td>
</tr>
<tr>
<td>3. U Central Florida</td>
<td>8. U Wisconsin LaCrosse</td>
</tr>
<tr>
<td>Computational Biology</td>
<td>10. Wittenberg</td>
</tr>
<tr>
<td>1. UC Merced</td>
<td>11. Wofford C</td>
</tr>
<tr>
<td>2. Center CB (Colo)</td>
<td></td>
</tr>
</tbody>
</table>

(NY Botanical) © Rubin Landau, OSU
DOE Awards, Fellowship

XSEDE (NSF)
(Extreme Sci & Engr Discovery Environ)

= \sum \text{SuperComputer Centers}

Education People

It Takes a Village

Engaging People In Cyberinfrastructure

- **Human Development**
- **Curriculum Development**
- **Tool and Resource Development**
- **Engaging Diverse Communities**
- **Minority Serving Institutions**
- **Informal Science Communities**
- **K-12 Community**
- **Science and Technology Centers**
- **EPIC Partners**
- **2&4 Year College and University Community**
- **Focused Development Areas**

National Science Digital Library

Math Science Partnerships

Advanced Technology in Education Centers

TeraGrid and Supercomputing Centers

Information Technology Research Centers

Computational Science Education and Training

Access to Advanced Technologies and Tools

Foundational Strategies

Mission
CP Research, eg 7 Supernova on Demand

- Particle physicists data-intensive computing meets astronomy
- Measure: expansion rate of universe via Type Ia supernovae
 - standard candle, 2-pt correlation function

Epoch 1

- Nat Roe: Physics student coding
 - Poor documentation
 - Poor structure

Movie ↓
Intellectual Content
Computational Physics Ed

- *Elements of Computational Science & Engineering Ed*, Yasar & L (SIAM)
- Prerequisite establish Computational Physics course
- Include CP Examples in classes
- Easy (too) expect 1 course teach entire subject (programming?)
- Historically guided by research needs; grad study = easy
- See *Student Learning Outcomes (AIP)* for specific subjects
- ≠, don’t need CP BS, 7 years
Examples for Physics Courses

<table>
<thead>
<tr>
<th>Physics Courses</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous Decay Simulation</td>
<td>Realistic Waves</td>
</tr>
<tr>
<td>Classical Chaotic Scattering</td>
<td>Shock Waves</td>
</tr>
<tr>
<td>Proper ODE Solution</td>
<td>Solitons</td>
</tr>
<tr>
<td>Double & Chaotic Pendula</td>
<td>Sonifications</td>
</tr>
<tr>
<td>Nonlinear Dynamics, Bifurcation</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>Fractals & Statistical Growth</td>
<td>DFT, Wavelet Analysis</td>
</tr>
<tr>
<td>Laplace & Possion Equations</td>
<td>Feynman Path Integrals</td>
</tr>
<tr>
<td>Realistic PDE Solutions</td>
<td>Wavelet Analysis</td>
</tr>
<tr>
<td>Molecular Dynamics</td>
<td>Prin Component Analysis</td>
</tr>
<tr>
<td>Quantum Wave Packets</td>
<td>Data Intensive</td>
</tr>
</tbody>
</table>
How Does this Work?

1. Challenging for some students (intro, multidisciplinary)
2. Unhappy with grade if just ran code, no thought, no time
3. Students often thankful when/that over (career)
4. Tears, excitement; human-C interaction = complex
5. “This combo is what I’m interested in, but had to pick 1”
6. “Why have we studied fluids only in our freshman year?”
7. “Now I know what...”
8. “Now Laplace’s eq...”
9. “I was up all night.”
10. Chaotic scattering: several MS, 1 Ph D
11. “MD: way I thought simulations should
13. Women: didn’t know liked C, problem solving
Online Courses

- Web N is here to stay & grow
- Challenge use it well for Education
- Not: general ed, weak discipline, motivation

N Feynman Path Integrals I

G

Computational Physics II, 465/565
Oregon State University
© RH Landau, Oregon State University, 2012 with Support from the National Science Foundation.
CCLI-0836971

Hamilton’s Principle of Least Action (Classical)

Newton’s Law \(\delta S[\mathbf{x}(t)] = 0 \)

“The most general motion of a physical particle moving along the classical trajectory \(\mathbf{x}(t) \) from time \(t_a \)

to \(t_b \) is along a path such that the action \(S[\mathbf{x}(t)] \) is an extremum.”

Dynamic slide

\[
\delta S = \delta S[x(t)] + \frac{\delta x(t)}{2} - \frac{\delta S[x(t)]}{2} = 0 \quad (1)
\]

(Constraint) \(\delta (x_0) - \delta (x_0) = 0 \quad (2) \)

\[
[x(x')] = \text{functional}
\]

\[
S[\mathbf{x}(t)] = \int_{t_a}^{t_b} dt L[x(t), x'(t)] \quad (3)
\]

\[
L = \text{Lagrangian} = \mathcal{T}[x, x'] - \mathcal{V}[x] \quad (4)
\]

Free Online Lecture and Slides (N-D Search)

RHL: Hybrid Course Online Lectures
Lecture time \(\rightarrow \) Lab time
"Kindle, Nook, Sony Reader... I say, Hardwick, this sure is an impressive library."
Digital Book

Technology Catching Up

- Exploring since 1996 WWW
- Multiple senses
- High accessibility potential
- Δ learning approaches
- Students: integrated package
- Vision: Interactive eqns, figs
- Python notebook (TOC -8 euler, abm)
~rubin/Books/CPbook/eBook/Notebooks

Not There Yet

- Exec files, OS’s incompatible
- Very large files (→ cloud)
- Validate data & codes?
- Security concerns
- No standard readers, writers
- ≠ deep subject mastery
- Mastery >> scanning
- No page numbers

A good book has no ending. –R.D. Cumming
Take Home Lessons

- Physics now done with computation
- Physics now done with other sciences
- Physics Ed now done with 50-100 year old stuff
- Students are people; more product than customer
- Agree: bad math means unreliable science?
- So bad computation means unreliable science
- Computation too important to leave to CS
- www.science.oregonstate.edu/~rubin
Conclusions & Summary

- Suggest: rejuvenate Phys Ed with modern Res (+CP)
- Need Δ curriculum: learn P + CS + math in context
- CP courses, materials: More efficient, effective *Model*
 - learning within problem solving, emotional connect
 - learn all 3 better, frees t for C, M
 - Freedom: common toolset & mindset CSE
- Thank you!
- www.science.oregonstate.edu/~rubin
Skills Expected of Physics UnderGraduates (AAPT)

Plot functions and data
Visualization complex data
Numerical integration, diff
Limits of algorithms
Programming*, compiled language
Several operating system

ODEs, PDEs
Matrix operations
Fourier transforms, FFT
Statistics, data fitting
Computational thinking
Symbolic programming
LATEX
Evidence for $\Delta (Physics\ Ed)$

- **Engineering**: 45%
- **Computer and Information Tech.**: 24%
- **Other Natural Science, Technology and Math**: 14%
- **Physics or Astronomy**: 10%
- **Non-STEM**: 7%

Knowledge and Skills Regularly Used by Physics Bachelor's Employed in the Private Sector, Classes of 2011 & 2012 Combined.

- **Employment in Engineering**
- **Employment in Computer Science or Information Technology**

- Solve Technical Problems
- Work on a Team
- Technical Writing
- Design & Development
- Use Specialized Equip.
- Perform Quality Control
- Manage Projects
- Knowledge of Phys. or Ast.
- Programming
- Work with Customers
- Advanced Math
- Simulation or Modeling
- Manage People
- Manage Budgets

Percentages represent the physics bachelor's who chose "daily," "weekly," or "monthly" on a four-point scale that also included "never or rarely."

http://www.aip.org/statistics

© Rubin Landau, CPUG
Two Lower-Division Courses

<table>
<thead>
<tr>
<th>Physics/Math/CS 265, Scientific Computing I (A First Course, Princeton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS, Basic Maple, Number Types</td>
</tr>
<tr>
<td>Maple Functions, Number types, Symbolics</td>
</tr>
<tr>
<td>Calculus, Equation Solving</td>
</tr>
<tr>
<td>Introductory Java</td>
</tr>
<tr>
<td>Limits, Methods (functions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics 464/564, Intro Computational Science (Computational Physics, Wiley)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unix Editing and Running*</td>
</tr>
<tr>
<td>Floating Point Errors & Uncertainties</td>
</tr>
<tr>
<td>Limits: precision, under/overo ws</td>
</tr>
<tr>
<td>Matrix Computing with JAMA libe</td>
</tr>
<tr>
<td>Differentiation, ODEs, ODE Eigenvalues</td>
</tr>
</tbody>
</table>
Contents of Upper-Division Courses

Physics 465–6/565–6 Computational Physics *(Computational Physics, Wiley)*

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realistic, Double Pendula*</td>
<td>Quantum Path Integration*</td>
</tr>
<tr>
<td>Fourier & Wavelet Analyses</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>Predators & Prey: Nonlinear Mappings*</td>
<td>Electrostatic Potentials</td>
</tr>
<tr>
<td>Chaotic Pendulum/Scattering*</td>
<td>Parallel Computing (MPI), Heat Flow</td>
</tr>
<tr>
<td>Fractals, Aggregation, Trees, Coastlines*</td>
<td>Waves on a String</td>
</tr>
<tr>
<td>Bound States via Integral Eqtns</td>
<td>Shock Waves & Solitons</td>
</tr>
<tr>
<td>Quantum Scattering, Integral Equations</td>
<td>Molecular Dynamics Simulations</td>
</tr>
<tr>
<td>Thermodynamics: The Ising Model</td>
<td>Electronic Wave Packets</td>
</tr>
</tbody>
</table>

Physics 467/567 Advanced Computational Laboratory

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar Maps of Archaeological Tells</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>Molecular Dynamics Simulations</td>
<td>Gamow States of Exotic Atoms</td>
</tr>
<tr>
<td>Meson-Nuclei p-Space Scattering</td>
<td>Pion Form Factor Data Analysis</td>
</tr>
<tr>
<td>Wavepacket-Wavepacket Interactions</td>
<td>Particle Hydrodynamics</td>
</tr>
<tr>
<td>Serious Scientific Visualization</td>
<td>Brain Waves Principal Components</td>
</tr>
<tr>
<td>Earthquake Analysis</td>
<td>Quantum Chromodynamics</td>
</tr>
</tbody>
</table>