structure in vision, back in the 1980s. Hierarchical processing follows a tree-like pattern, from low-level coarse computations to high-level fine ones. “Most of the power-

For a brief look at current events, including program announcements and news items related to science and engineering, check out the following Web sites:

- Computer and Information Science and Engineering Pathways to Revitalized Undergraduate Computing Education (CPATH; www.nsf.gov/pubs/2008/nsf08516/nsf08516.htm). The US National Science Foundation (NSF) is accepting proposals for its CPATH program, which aims to revitalize undergraduate computing education in the US. Grant amounts range from US$50,000 to $1 million. Proposal deadline is 11 March 2008.
- EPSCoR Research Infrastructure Improvement Grant Program (www.nsf.gov/publications/pub_summ.jsp?ods_key=pr07135). Under the Experimental Program to Stimulate Competitive Research (EPSCor), the NSF is awarding grants to programs in historically underfunded areas. Proposals are due 4 January 2008.
- High-performance computing courses at Purdue University (www.hpcwire.com/hpc/1962653.html). Purdue University’s Department of Computer and Information Technology will offer HPC courses in its 2008 spring semester.
- New possibilities for deaf students in computer science (www.nsf.gov/publications/pub_summ.jsp?ods_key=pr07135). This past summer, the NSF sponsored a nine-week program designed to increase the number of deaf or hearing-impaired students pursuing computer science degrees and careers. Instructors taught and communicated with students through sign language and real-time captioning systems. Applications for the upcoming summer program are now being accepted.
you’ll have one hallucination per picture,” Geman says. That is, given a photograph of 10 people, the computer might identify nine of the faces, miss one of the faces, and then “see” at least one face where there is none. “If you try to tune the system to get 99 out of 100 faces, you might have hundreds of hallucinations.”

Although Geman concedes that he didn’t intend the word “hallucination” literally in that statement, Serre and Poggio are actually hoping to make their computer model hallucinate—to gain insight into human brain disorders such as schizophrenia.

“We have a hypothesis that schizophrenia comes from an imbalance between the feed-forward and feedback processing in the brain,” Serre says. “And so we think
people collaborate on a project simply and quickly via the Internet (or an intranet). Like Wikipedia, the pages are simple but functional, with the focus on text over graphics. Consequently, the source pages are close enough to plaintext to be read and edited without markup symbols getting in the way. When successful, this encourages people to share and record information. Although we can use email to do this, idea streams and data tend to get lost or ignored in the midst of all the junk mail, and rarely get assembled into a coherent whole that remains in place as the project’s archive. Indeed, to many people, wikis are a reincarnation of the democratic, generative approach to the Web that encouraged the original users to build it, an attitude that seems to have been lost in the Web’s commercial developments.

Although news stories indicate that wikis aren’t as popular as other Web 2.0 technologies, they also indicate that many businesses and organizations have found this mix of technology and sociology useful. Already, wikis play a key role in education, particularly for online courses (even I use one in my computational physics class). The early conclusion on the effectiveness of wikis for education is similar to that for online courses; some are successful and some aren’t, with the key being the pedagogy not the technology. The experience of several teachers, myself included, supports the moral of the opening joke. Many science and engineering students don’t take naturally to the social interactions inherent in wikis, but if you incorporate one as a key element in a course and require that students use it to be successful, then they’ll benefit from increased interactions with the materials and from peer stimulation. For example, some courses encourage students to post their required papers on a wiki so that other students can critique the papers before submission; this tends to improve the grades on the papers (surprise, surprise) and possibly student learning. Other courses have encouraged students to submit exam questions and solutions on a wiki, with the solutions edited by other students but not the teacher. The teacher then chooses a few of these questions for the exam.

But beginnings are hard, and at present, the CISE editorial board doesn’t have a wiki.

Looking Ahead
The vast amount of image data available via Web sites such as Flickr and Google presents an excellent opportunity for the development of massively data-driven computational approaches to object recognition, Belongie says. “Unfortunately, massively data-driven approaches tend to be massively expensive, so much work remains to make such methods viable in practice,” he adds. “Cortically inspired approaches such as those from Poggio’s lab could provide inspiration for the kind of parallelism needed to achieve this goal.”

The payoffs could be enormous, says Pietro Perona, director of Caltech’s Center for Neuromorphic Systems Engineering (www.cnse.caltech.edu/). “If you think of MRI machines in medicine—all those volumes of medical data scanned—those images are examined briefly by a doctor, but if there was a computer churning on them, you can imagine the number of cancers that could be found, or the trends happening in a population that you could discover.”

He cited as another example the search for missing pilot Steve Fossett, who disappeared on a flight in the Nevada desert in September 2007. Google has made satellite images of the entire area available, and volunteers are searching the images via a Web interface on Amazon.com (www.mturk.com/mturk/welcome). Although nobody has found Fossett’s plane yet, they have found the wreckage from other plane crashes that happened long before. Wouldn’t Fossett have been found by now, Perona asks, if computers were capable of scanning these images?

“Computers are blind and deaf. They do not see the pictures, they do not hear the sounds. And most of the ‘juice’—the information—is in there. A computer should be an expert of all the content,” he says. Right now, search engines can only find an image based on the text, or tags, that people use to label data. It’s as if all the imagery on the Internet were a vast library in which visitors could only walk down the aisles and read the covers of books on the shelves. “We want to be able to take the books off the shelf and read them.”

“Seeing” computers could form the basis for the first true artificial intelligence. They could support assistive devices for the disabled; they could even lend insight to the workings of the human mind. But for all of machine vision’s potential, computers are still falling short of the task. Even after 20 years of intense research, the human brain is still the clear winner when it comes to identifying objects.

Geman believes the answer has something to do with our seemingly innate ability to solve problems by first thinking broadly. We identify objects, he says, by using a process similar to a game of “20 questions.” We start by examining all the possible answers at once, and we quickly hone in on the right one.
Now a postdoctoral researcher at CBCL, Serre reports that his group is working to incorporate feedback into its model and to add algorithms that emulate eye movements. They’re also hoping to develop the model to recognize human movements and objects in motion—two other things our brains do very well.

“If you understand the human visual system well enough, you would hope that one day you could make machines that would work just as well as human brains,” he says. “I think that ultimately machines will be even better than the human brain, but if we could just emulate the visual system, that would be a good start.”

Pam Frost Gorder is a freelance science writer based in Columbus, Ohio.