INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

Random Walks

A Random Walk (Real World Phenomena)

Imagine a perfume bottle opened in the front of a classroom and the fragrance soon drifting throughout
the room. The fragrance spreads because some molecules evaporate from the bottle and then collide
randomly with other molecules in the air, eventually reaching your nose even though you are hidden in
the last row. We wish to develop a model for this process which we can then use as the basis for a
computer simulation of a random walk. Once we have tested the simulation, we can virtually “see” what
the random walk taken by a perfume molecule looks like, and be able to predict the distance the
perfume’s fragrance travels as a function of time. The model we shall develop to describe the path
traveled by a molecule is called a random walk. “Random” because it is chance collisions that determine
the direction in which a perfume molecule travels, and “walk” because it takes a series of “steps” for the
molecule to get from here to there. The same model has been used to simulate the search path of a
foraging animal, the fortune of a gambler, and the accumulation of error in computer calculations,

among others [1-9].

It is probably true that not all processes modeled as a random walk are truly random, in the sense that
random means there is no way of predicting the next step from knowledge of the previous step.
However, all these processes do contain an element of chance (what mathematicians call stochastic
processes), and so a random walk, which has chance as a key element, is at least a good starting model

for them.

An Aside on Root Mean Square Averages

Before we develop our computer model of a random walk, which is quite simple, we need to develop a
simple mathematical model. Then we can use this mathematical model to see if the computer

simulation is behaving in a way that we would expect nature’s random walk to behave.

The math problem is to predict how many collisions, on the average, a perfume molecule makes in

traveling a distance R. You are given the fact that, on the average, a molecule travels a distance r
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between collisions. (The velocities of the molecules and distance traveled between collisions increases

with temperature, but we shall assume that the temperature is constant.)

Before we can proceed we need to be a bit more precise about what we mean by average. In common
usage, we may use the word “average” to denote what in statistics is called the mean. For example, let’s
say N students take an exam, and the grade for student i on the exam is x;. Then the mean or average

score for the exam is

1 N
(1) f=<x>:W2xi
i=1

Sometimes the numbers we want to take the average of can have negative as well as positive values (we
hope your test scores do not have the former!). While it is perfectly acceptable to take the average of
positive and negative numbers, sometimes we are more interested in what might be called the average
size of the numbers, irrespective of their sign. In that case we would use another type of average known
as the root mean square or rms average. In an rms average we first find the mean of the square of the

numbers
N
(2) x_2=<x2>=i2x2.
N 1
i=

Since only positive numbers are being averaged in Equation (2), there is no cancellation of terms in x2 ,

but it is a distance squared and not a distance. To obtain a measure of the distance, we take the square

root of x2,

3 Xrms = \/x= = /%Z?’zlxz.

This quantity, the root mean square average of x, serves as a measure of the average magnitude of x,
regardless of what sign x may take. Equation (3) is not as bad as it looks. It just means take the average

of x2, and then take the square root of the average.

Random Walk Mathematical Model

Many areas of science make use of a mathematical model of a random walk that predicts the average
distance traveled in a walk of N steps. In order to verify the validity of our simulated random walk, we

will compare the mathematical and simulated results. The mathematical model tells us that the average
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distance R from the origin (see Figure 1 Left)

at which the walker ends up after N steps of

R
N length 1, is equal to VN. Of course if you
>Ax| -
& ~‘ 2 4= add up the lengths of each step the total
| 3
By distance traveled is N, but since the steps

are not all in a straight line, we can’t just
. . . add up their lengths to calculate the

Figure 1. Left: A schematic of the N steps taken in a P g
random walk that ends at a distance R from the origin. distance from the starting point.
Right: The actual steps taken in a simulation of a 3-D

Here we present a simple model for a
random walk.

random walk in two dimensions, that is, on
a flat surface. The same basic model can be applied to walks in one or three dimensions, or be extended
with more sophisticated methods of including chance.

We assume that a “walker” takes sequential steps, with the

R AY direction of each step independent of the direction of the
previous step. As seen in Figures 1 and 2, the walker starts
AX
t the origi d take N steps in the x-y pl h of length

Figure 2. A right triangle with sides atthe origin and take [ steps In the x-y plane, each otleng
equal to the horizontal and vertical 1. The first step has a horizontal (x) component of Ax;, and
components of the length R of a .
random walk. a vertical (y) component of Ay, . The second step has a

horizontal component Ax,, and a vertical component Ay,,
while the last step has a horizontal component Axy, and a vertical component Ayy. Although each step
may be in a different direction, the distances along the x and y axes just add algebraically. Accordingly,
AX, the total x distance from the origin is

(4) AX = Axy + Axy + ..+ Axy

Likewise, AY, the total y distance is

(5) AY = Ay, + Ay, + ...+ Ayy.

The radial distance R from the starting point after N steps (Figure 1 Left) is the hypotenuse of a right

triangle with sides of AX and AY (Figure 2). We use Pythagoras’s theorem to find R:

(6) R(N)? = AX? + AY?

(7) R(N) = AX? + AY?,

where the argument N is included to indicate that R is a function of the number of steps N.
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Equation (6) gives us the distance traveled in a random walk of N steps. Since random walks have chance
entering at each step, it is likely that different walks of N steps will result in different values for the
length R. However, we expect that if we average over many walks, all with the same number N of steps,

then we should obtain an average in which some of the random fluctuations have been removed.

So how do we go about taking an average value for R? First let’s make it clear that we are keeping the
number of steps N in a walk constant while we take the average. To be explicit, let’s say that we average
over M different walks, all with N steps. Since the steps in our random walk are just as likely to go to the
right as to the left, or to go up as often as down, if the number of walks M is large, then the average
over all the walks of AX(N) = 0. Likewise, the average of AY would also vanish. Well, that won’t do! The
walker does end up some finite distance from the starting point every time, and we should be able to

make at least an approximate prediction of that distance.

This then is where our old friend, the root-mean-square average of Equation (3) comes to our rescue.
Since R? is always positive, we can take its average over M walks, and then take the square root of that

average to get a measure of the average distance from the origin after N steps:

%Z?’lﬂ(ﬁ)j

9) Rrms(N) = JF(N)

where ﬁj indicates one of the j*calculated value of the average R?.

(8) RZ(N)

If this seems a little confusing, do not worry too much about it now because we’ll come back to when
we evaluate Equation (8) as part of our simulation. Now we have to do a little algebra, which may seem
complicated at first, but then becomes rather simple. Let’s take our expression Equation (6) for R? and

substitute Equations (4) and (5) for AX and AY:

(10) R(N)?2 = (AX; +AX, + ..+ AXy)? +
(11) = (AX))? + (AX))2 + ..+ (AXy)? + AX{AX, + ...+ AX; AXy
+ (AY))? + (AYy)? + ...+ (AYy)? + AY; AY, + ...+ AY; AYy,.
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Now Equation (11) is unquestionably rather messy looking, but not to worry. If we take the average of
R(N)? for a large number M of different walks (all with N steps), then all of the cross terms like AY; AY,
will vanish (or average out to a small number) since they are all just as likely to be negative as positive.
In contrast, the squared terms like (AX;)? are always positive and so do not vanish when we take the

average. We are thus left with a much simpler approximation for the average value of R(N)?:
(12) RZ(N) = (AX))? + (AX)? + ..+ (AXp)2 + (AY))? + (AYy)% + ...+ (AYy)?

(13) = [(AX1)? + (AY)2] + [(AX2)2 + (AY,)%] + -+ [(AXy)? + (AYy)?].

But note, each of the sums in (12) is just the length of the corresponding step in the random walk,
which we have already said equals 1. So we have N terms each equal to 1, and when we add them all up

we get the simple result

(14) R2(N) = N.

Equation (13) states that the average distance squared after a random walk of N steps of length 1 is N. If
we take the square root of both sides of Equation (13) we obtain the desired expression for the root-

mean-square, or rms, radius:
(15) Ryms(N) = JF(N) ~VN.

This is the simple result that characterizes a random walk. To summarize, if the walk is random, then we
expect that on the average the walker is just as likely to be on the left as on the right, or as likely to be
up as down, or in other words,

(16) AX ~AY = 0.

However, even though all directions are equally likely, the more steps that the walker takes, the further
it gets from the origin, with the rms distance from the origin after N steps growing like the square root
of N. In practice, we expect simulations to agree with equation (14) only when the number of steps is
large and only when the number of paths used to take the average is large. Enough talk, let’s simulate a

random walk and see what we get.



