INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

Random Numbers

Observations and Problems

We all know from our everyday experiences that nature is full of chance occurrences. There are things
that happen, but which we are not able to predict. We often presume that there are causes for all
physical events, but, for whatever the reasons, we may not be able to discern them. Some people
ascribe theological significance to some chance events, while others may believe that there are definite
causes, but that the inherent complexity of the processes keeps us from deducing them. Our problem in
this module is to explore whether a completely deterministic computer program can give output that
seems to include elements of chance.

Background

This module addresses the problem of how computers generate numbers that appear random and how
we can determine how random they are. Other modules use these random numbers to simulate
physical processes like radioactive decays and random walks. In the module on “Determining Areas by
Stone Throwing”, we see show how to use these random numbers to evaluate integrals.

This is a fascinating subject in that we give precise definitions to words that are commonly used, but
possibly with somewhat different meanings than the mathematical ones. It’s a free world and so you
may continue to use these words as you like, but please remember that when we use them it is within
the context of their mathematical definitions.

For example, the concept of determinism refers to events that are caused by prior events. This is related
to the principle of causality which states that a physical event has its origin or cause in some other
action at an earlier time (birth precedes death). The opposite of determinism is chance, which implies
an event in which there is an element of unpredictability. Trying to understand these conceptsin a
philosophical way, or to understand how a world described by deterministic physical laws can exhibit
chance, is deep question that has fascinated some brilliant minds [Chance]. For our purposes, we can
think of chance as a useful, though approximate, way to describe very complex systems in which there
are be too many degrees of freedom for us to predict what is going on. For example, we probably all
agree that chance enters when we throw a die. Yet if we knew exactly what the velocity and position of
the die was when it was thrown, as well as a complete knowledge of the die’s geometry and the nature
of the surface upon which it lands and the air through which it travels, then we should be able to
calculate the die’s behavior. This being too complicated and requiring more information that possible to
attain, all we can say what the probability of coming up with any number is 1/6th, but exactly which
number comes up is a matter of chance.

As you will see, we use the word random often in this module. It too has many definitions, and we use it
in the statistical sense to mean the absence of correlation. Here correlation means a connection



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

between two objects. So when an event is random, we mean that it is not connected to a previous
event, and thus that it is not determined by a previous event.

Shodor Tutorial on Random Number Generators

http://www.shodor.org/interactivate/discussions/RandomNumberGenerato/

Deterministic Randomness

Some people are attracted to computing by its deterministic nature; it's nice to have a place in one's life
where nothing is left to chance. Barring the unlikely chance of a computer error, a computer program
always produces the same output when it is fed the same input. Nevertheless, much technical
computing and most electronic game playing use what are called Monte Carlo techniques that at their
very core include elements of chance. These are calculations in which random numbers generated by
the computer are used to simulate naturally random processes, such as thermal motion or radioactive
decay. The inclusion of the element of chance makes the calculations much like experiments done on a
computer (this is the way in which the computer simulates natural processes). Indeed, many scientific
and engineering advances have come about from the ability of computers to solve previously intractable
problems using Monte Carlo techniques.

Random Sequences (Theory)

We define a sequence ry T, T3, ... as random if there are no correlations or relations among the
numbers. This does not mean that all the numbers in the sequence are equally likely to occur, but rather
that even if we know all of the numbers in the series up to some point, there is no way of knowing with
certainty what the next number will be.

If the numbers in some series all have the same likelihood to occur, then the sequence is said to be
distributed uniformly, or to be a uniform sequence. Note that a random sequence of numbers can be
uniform or not; even if some numbers are more likely to occur than others, if we cannot be sure what
the next number will be, then the series is still random.

To illustrate, the sequence
(1) 1,2,3,4,..

appears to be uniform but does not appear to be random. All integers are present and equally likely
(uniform), but knowing any one integer in the sequence permits you to predict the next one
(nonrandom).

In contrast, the sequence

(2) 0.84, 1.03, 2.5, 13, 0.74, 10, 1.6, 0.52, 1.8, 0.42,

appears to be random, but does not appear to be uniform since number close to 1 appear more likely
than those close to 0 or 2. So even though we can say that it is more likely for the next number in the



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

sequence to be close to 1 than to 0, the sequence is still random because we cannot predict what it is
going be.

By nature of their construction, computers are deterministic and so cannot generate truly random
numbers. Consequently, the so called “random” numbers generated by computers are not truly random,
and if you look hard enough you can verify that they are correlated to each other. Although it may be
quite a bit of work, if we know one random number in the sequence as well as the preceding numbers, it
is always possible to determine the next one. For this reason, computers are said to generate
pseudorandom numbers (yet with our incurable laziness we won't bother saying “pseudo “ all the
time).

A primitive method for generating truly random numbers is to read in a table of numbers determined by
naturally random processes such as radioactive decay, or to get input from some physical device
measuring such processes.



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

Random-Number Generation (Algorithm)

Most computer languages like Python and programs like Excel have a built-in function that supplies a
different random number each time the function is called. These routines may have names like rand, rn,
random, srand, erand, drand, or drand48. The sequences of numbers so produced are pseudorandom
sequences, although they are usually called just “random numbers”. Sometimes you must, or at least
have the option, to specify what the first number in the sequence (the “seed”) is. Otherwise, the
computer makes its own pick and may use something like the local time as the seed in order to produce
different sequences each time the program is run. For those who are interested in, or required to,
understand the algorithm used to produce random numbers, we describe it in the optional subsection
below. Even if you do not work through that section, you should go to the section describing how to

test a random number generator.

The Linear Congruent Method*

The linear congruent method is the most common way of generating a pseudorandom sequence of
numbers. We denote the i random number in a sequence as r; and assume that we know the seed

T Let us say that we want the random numbers to be generated so that they are all greater than 0, but
less than M — 1, where we know the value of M. We express this mathematically as

(3) 0<r;<M-1.

To generate the entire random sequence we need a formula that takes r; and uses it to calculate the
next random number r;;q The linear congruent method multiplies r; by a constant a, adds a different

constant c to the product, and then divides the sum by the range constant M:

ar; +c)

(4) riz1 = remainder (

The unusual aspect of Equation (4) is the “remainder” function, which may not be familiar to you. Do
you recall the first time you learned division back in grade school, and learned that sometimes when you
divide two integers there results another integer with a “remainder”? For example, 12/4 = 3, yet 13/4 =
3 + Remainder 1. Well the remainder function in (4) means just the same thing: divide ar; + ¢ by M,
throw away the integer part, and keep just the remainder. Yes, that is right, throw away the most
important part ! For example

(5) remainder ( %) =remainder ( 3 i) =1, remainder ( %) = remainder ( 32%) =2.

The reason Equation (4) works as an algorithm for generating random numbers, is that when very large
values of a and M are used, that remainder, being the least significant part of the quotient, is essentially
the result of round-off error or contains some “garbage” that was laying around in the computer’s
memory. Furthermore, since the sequence repeats after M numbers, large M keeps the sequence from
repeating often (repetition implies nonrandom).



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

Scaling and Uniformity of Random Numbers (Not Optional)

It is always a good idea, and sort of fun, to test a random number generator before using it.

As see from the above example, the linear congruent method generates random numbers in the range
0--M. If we want numbers in the more common range of 0--1, then we need only divide by the endpoint
M =9. By doing that, the sequence in Equations 5 -- 7 becomes

(10) 0.333, 0.444, 0.889, 0.667, 0.778, 0.222, 0.000, 0.111, 0.555, 0.333

This is still a sequence of length 9, but is no longer a sequence of integers.

Uniform Distributions

Another concept, which is often confused with randomness, is that of uniformity. If the numbers in a
sequence are generated with equal likelihood of being anywhere within the range of numbers [0--1 for
Equation (10)], then those numbers are said to be distributed evenly or uniformly. For example, the
sequence in equation (10) appears uniform, at least within the statistical variation that occurs when the
sample size is small. Specifically, imagine making a histogram with bins, each of width 0.1. The sequence

(10) will have one number in each bin, and so would result in a flat histogram. This all means that the
sequence does look uniform.

+
250++++++++++++1+
200+++++++++++:++
PR

+++
+++++F
150 | 4+ ++++ el

100 |

50 | T

++++ E

0 50 100 150 200 250 0O
X X

Figure 4 Left: Random numbers from a generator with correlations. Right: Random
numbers from a properly functioning generator.

On the right of Figure 3 you see (x,y) = (1}, Tj4+1) results from a random number generator that has
made a “good” choice of internal parameters [a = 25214903917, c =11, M =281,474,976,710,656 in
Equation (4)].

Make up your own plot and compare it to Figure 4 right. Be warned, your brain is very good at picking

out patterns, and if you look at Figure 4 right long enough, you may well discern some patterns of points



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses

clumped near each other or aligned in lines. Just as there variations in the uniformity of the distribution,
a random distribution often shows some kind of clumping --- in contrast to a completely uniform “cloud”
of numbers.

There are more sophisticated and more mathematical tests for randomness, but we will leave that for
the references. We will mention however, that one of the best tests of a random number generator is
how will computer simulations that use that generator are able to reproduce the nature of natural
processes containing randomness (like spontaneous decay), or how well they can reproduce known
mathematical results. The modules on Random Walk and Spontaneous Decay contain such simulations,
and the module on Stone Throwing contains such a mathematical result.

Glossary References

[Chance] Jacques Monod (Nobel Prize 1965) essay "Chance and necessity". It is also asserted by Werner
Heisenberg (Nobel Prize 1932), Sir Arthur Eddington, Max Born (Nobel Prize 1954) and Murray Gell-

Mann (Nobel Prize 1969). The physicist-chemist llya Prigogine (Nobel Prize 1977) argued for
indeterminism incomplex systems.

[CP] Landau, R.H., M.J. Paez and C.C. Bordeianu, (2008), A Survey of Computational Physics, Chapter 5,
Princeton Univ. Press, Princeton.



