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1 Prologue

Quantum mechanics is beset by paradoxes, perhaps the greatest of which
is that it works at all. Within this one paradox are many sub-paradoxes.
The two-slit interference experiment is an example: massive particles make
interference patterns just as light waves do, but the particles themselves
are indivisible point-like objects. To account for the phenomenon one must
somehow believe that the possibility that a particle might have gone through
one slit interferes, constructively or destructively, with the possibility that
it might have gone through the other.

Quantum scattering is another sub-paradox in the same genre. Particle
accelerators accelerate particles and detectors mark their passing, but their
distributions resemble interference patterns. The many manifestations of
a single particle passing to the right of a scattering center, we are told,
interfere with those of the same particle passing to the left.

There is a way of formulating quantum mechanics that has had some
success resolving these conundrums. The idea, variously called Bohmian
mechanics, causal quantum mechanics, or pilot wave theory, was originally
proposed by Louis deBroglie more than seventy years ago and periodically
abandoned and rediscovered since then. The theory works by abandoning
wave-particle duality. There are waves and there are particles, but they are
separate entities. Particles pursue deterministic trajectories under the influ-
ence of a potential, not unlike particles in classical electro-magnetism. The
potential itself arises from the dark mills of quantum mechanics and is ulti-
mately non-local and spooky. The theory is controversial in that it implies
that the conventional Copenhagen interpretation of quantum mechanics is
wrong. It appeals to people (like myself) who think it is wrong anyway.



Much of the current interest in the theory is due to John Bell who cham-
pioned it throughout his career.! Bell regarded it as, if not the ultimately
correct interpretation of quantum mechanics, at least the prototype of such
an interpretation. It has been featured in Physics Today,? and is the subject
of a recent book, The Quantum Theory of Motion by Peter Holland.? Pilot
wave theory has become, if not mainline physics, at least a semi-respectable
cottage industry.

Pilot wave theory has an additional virtue even if one disregards its
philosophical implications: the theory is not wrong. It gives the same re-
sults as conventional quantum mechanics in those situations where they can
be directly compared, but in a way that is conceptually and non-trivially
different. I am tempted to say that quantum mechanics should be like this.
Whether it actually is is a separate question.

Pilot wave theory explains the two-slit interference experiment as fol-
lows: the source emits a stream of particles, electrons let’s say, and these
particles follow smooth trajectories on their way to the detector. The trajec-
tories are completely deterministic; if we knew exactly the initial conditions
of any particle we could calculate its exact path through the system. The
trajectories are very sensitive to these conditions however. Any attempt to
determine them would completely alter the trajectory. This is the uncer-
tainty principle of course, but it arises in a completely “mechanical” way.

Why then is the interference pattern observed? The particles move un-
der the influence of a potential field that is derived from the Schrodinger
equation. This field has wave-like properties, and it “guides” the particles
along so that they are more likely to hit the detector in some regions and
less likely in others. This is analogous to classical electrodynamics in which
charged particles move in response to the electric and magnetic fields that
are calculated using Maxwell’s equations.

Quantum scattering, in a subtle way, is even more puzzling. The two-
slit device automatically localizes the particles. The slits can be regarded as
microscopic quantum sources. Particle accelerators, on the other hand, are
mammoth devices. It is not clear how and on what scale the localization
takes place. Elementary scattering theory treats the process in a time-
independent way. The incident particles are represented by a plane wave
that fills all space. One avoids the bizarre consequences of this assumption
by ignoring them.

1John Bell, Speakable and Unspeakable in Quantum Mechanics

2Sheldon Goldstein, Quantum Theory Without Observers — Part Two, Physics Today,
April 1998, pp 38-42

3 The Quantum Theory of Motion, Peter Holland, Cambridge University Press, 1993



There is a more respectable approach to scattering theory in which the
plane wave is replaced by wave packets. The packets are assumed to be
much larger than the range of the interaction but smaller than macroscopic
sizes. This avoids the formal problems inherent in the time-independent
approach,? but at the expense of introducing two new difficulties: one con-
ceptual and one mathematical. The conceptual difficulty is this: acceler-
ators produce particles, not packets. The packets seem not to correspond
to anything in the “real world.”® The mathematical treatment deals with
“asymptotic” behavior: the differential cross section is derived from the
properties of the wave packet after it has spread far beyond the scattering
center. The connection between the interaction region and the asymptotic
region is made with some rather vague approximations, however. It is hard
to avoid the impression that the differential cross section, which can be mea-
sured, must somehow depend on the exact nature of the wave packet, which
is a mathematical fiction.

This project addresses a very specific question: is the wave packet for-
malism an adequate representation of quantum scattering? To put it another
way: are the asymptotic results of scattering theory independent of the mi-
croscopic details of the wave packets? I really don’t know the complete
answer to this question. The best I can say is that, in some situations, yes.
The complete answer will require much more research, partly because there
are so many details to think about, and partly because the calculations re-
quire a lot of computing time to get accurate results. You are invited to
participate in this research. Please let me know what you learn.

The equations of motion in pilot wave theory are typically coupled non-
linear differential equations that cannot be solved analytically. This is prob-
ably one reason why the theory was not accepted more readily. The calcula-
tions are easily within the reach of modern computers and software, however,
so simulations such as this exercise are topical as well as useful instruction
in a variety of theoretical and computational topics. I have written the code
in MATLAB 67 because of the many algorithms and graphic tools that are
part of the MATLAB package.

4These will be explained presently.

5Unlike the slits, which are demonstrably real.

SIn fact, there are situations in which the approximations are known to be invalid.
"The MathWorks Inc



2 Pilot Wave Theory

In some sense, pilot wave theory is just a reformulation of quantum mechan-
ics. It is based on the Schrodinger equation, and the pilot waves themselves
are derived from the usual time-dependent wave function. The wave func-
tions are interpreted in terms of particle trajectories, but even this interpre-
tation does not differ too much from conventional quantum mechanics.

Let’s make this more concrete by explaining in a few rules how to derive
trajectories from wave functions.

1. Solve the time-dependent Schrodinger equation using whatever poten-
tial is relevant to the problem. The usual rules of linear superposition

apply.®

2. Take the wave function obtained in this way and decompose it as
follows A
(x,t) = Re*/" (1)

The new functions R and S are real functions of x and ¢, and of course
R>0.

3. In ordinary quantum mechanics we would be interested in R since
R? = ¢*1). The new entity is the S function. From it we obtain the
equations of motion

v Cc%‘ _ %VS(x,t) )

4. Equation (2) is a set of coupled first-order ordinary differential equa-

tions. The solution x(t) gives the position of the particle as a function

of time. If we knew that the particle was at x(t,) at time ¢, we could

find the complete trajectory by numerically integrating (2). (Finding

analytic solutions is a hopeless task except in the case of a few “toy”

problems.) The trajectories determined in this way are unique and
smooth.

This procedure, at first sight, seems completely mysterious or ad hock.
It is actually rooted in conventional quantum mechanics as well as classical
mechanics. This comes about because the usual probability current density
is related to R and S as follows

. Zh * * _
j= 5 (W — V) = Ry 3)

8The significance of operators is somewhat different, however.



It is also easy to show that the density R obeys the continuity equation

V~(RV)+%—]::0 (4)

Thus R and v can be interpreted as the density and velocity of a hydrody-
namical flow of a compressible fluid. The trajectories are like the streamlines
that are used to visualize this flow; a drop of fluid at (x,t) has by virtue
of its position a velocity v, and it will follow the path along the streamline
given by the solution of (2). Even if one does not believe that quantum
particles follow deterministic trajectories (and this is certainly not the usual
interpretation) one can still adopt a “minimalist” position and say that the
trajectories are just a way of visualizing the flow of quantum probability.

It is interesting to compare (2) with Newton’s second law of motion

2

e =~ Vo(x,1) 5)
Equation (5) defines a force field, or more properly, an acceleration field. A
particle at (x,t) has by virtue of its position, a certain acceleration. This
acceleration comes about because of the potential ¢ (due to gravity per-
haps or electromagnetic interactions). Since this is a second order equation
it requires two initial conditions, position and velocity, to determine the
trajectory. Equation (2), by contrast, defines a velocity field and fixes the
subsequent motion with a single condition.

Equation (5) bothered physicists for two centuries because of the myste-
rious nature of ¢. How could the sun, for example, move the earth 96 million
miles away when there was nothing in between but empty space? This was
called “action at a distance,” and it seemed no better than believing that
the earth was moved along by angels! We now know that potentials are
a consequence of deeper theories involving the exchange of particles such
as photons or gravitons. Pilot waves are also an action at a distance the-
ory. The S function comes about because of mysterious non-local quantum
mechanical interactions with other particles and with the experimental ap-
paratus. Even if it is not the ultimate reality behind quantum mechanics,
it may be a useful step toward some more complete theory.

3 Scattering Theory

3.1 A Few Basics

The scattering of quantum particles from a fixed potential is covered in every
introductory quantum text. The development invariably goes like this; the



following wave function “looks like” it might be relevant to scattering.

ikr
boc T 4 f(0)— (6)
More specifically, it is a solution to the time-independent free-particle Schrodinger
equation in regions where r is so large the the “centrifugal” term, [(I+1)/r?,
in the radial wave equation can be neglected. It represents an incident plane
wave, eik'r, and an outgoing spherical scattered wave. The function f(6)
is called the scattering amplitude. It is determined by the interaction of
the incident wave with the potential. It contains the information that the
scattered wave carries away from the interaction.
The second step is to substitute the second term of (6) into (3). One

easily finds
joc|f[2/r? (7)

This is interpreted as the flux of particles away from the target. The quantity
that is actually measured is the differential cross section

do
=P 0

This argument is wrong for two related reasons. One is never justified in
calculating a probability from one term in a linear superposition. Otherwise
there would be no such thing as interference. If the complete equation for 1
is substituted into (3) there appear interference terms proportional to 1/r,
which at macroscopic distances dominate the 1/r2 terms by typically thir-
teen orders of magnitude.” The second difficulty is that (6) is a stationary
state wave function. This would be appropriate for a bound state system
in which nothing is happening. In a scattering experiment, by definition,
something is happening; an incident particle is bouncing off of some other
particle or scattering center.

The usual way around these difficulties is to use the solution of the time-
dependent Schrodinger equation assuming that the initial state consists of
a wave packet moving toward the scattering center. The scattering process
then produces a spherical wave packet, i.e. an expanding spherical shell, and
the incident packet continues undeflected. Some time after the scattering
the two packets are separated so that the interference terms are suppressed
(except in the forward direction where the incident and scattered wave are

9A poor approximation.



still in contact). This is described mathematically as follows: Equation (6)
is replaced by the following time-dependent solution.
i} _ iwgt iwkt@ 1

(r,t) ="' ®(r —vt,0) + e . O (rk — vit, 0) 9)
The function ®(r — wvgt,0) represents a wave packet centered at r = vyt
moving with the group velocity vy = hk/m. At t = 0 the packet is centered
at r = 0, which is the scattering center. The scattered spherical wave packet
is ®(rk — vit,0) where k is a unit vector in the vy, direction. The second
term of (9) is substituted into (3) (arguing that the interference terms have
been suppressed) and the entire expression integrated from ¢t = —oo to +00.
The resulting differential cross section is still given by (8).

The argument is semi-quantitative at best. True, the interference terms
vanish at large distances, but it is not clear what they are doing inside the
packets during the scattering process. The usual derivation requires various
approximations, particularly some assumptions about the size of the wave
packet. This point is puzzling. Why should the physical results depend on
something so artificial as a wave packet? Real accelerators, after all, produce
particles, not packets.

Despite this, scattering theory works. Equation (8) together with all
the procedures that have been developed for calculating f seem to describe
the real world. The purpose of this project is to develop some insight into
how and in what circumstances the wave packet formalism works. We are
open to the possibility that wave functions are not a valid description of the
scattering process and that some other formalism is required. Our approach
is to calculate the pilot wave functions R and S using a wave packet approach
that does not require the approximation » — oo. The physical content of
these functions can be exhibited in various ways, both by calculating particle
trajectories and by visualizing the functions directly.

3.2 More Theory

In order to describe the model used in this project, it is necessary to summa-
rize the techniques used to find scattering solutions of Schrodinger’s equa-
tion. This material is covered in most quantum texts. I have found the
treatment in Gottfried’s Quantum Mechanics particularly helpful.'®

The wave equation can be written as follows:

(V2 + E)p(r) = U(r)(r) (10)

OKurt Gottfried, Quantum Mechanics, Vol I, Advanced Book Classics, Benjamin, 1989




where

E= h;:j (11)
U = 25V (r) (12)

Scattering problems are best solved using a Green’s function that has the
right asymptotic boundary conditions “built in to it.” The Green’s function
for (10) is defined by the following equation:

(V24 EHG(r, 7)) = 6(r — 1) (13)

The solution is well known from classical as well as quantum scattering.

1 eik\’l"*’l"/|

Gr(r,r') = (14)

C4r lr — /|

This expression looks simple, but it is ambiguous because of the singular-
ity at 7 = /. In fact it is this ambiguity that makes it possible to construct
Green’s functions with the right asymptotic boundary conditions. One ex-
ploits this opportunity by writing Gy, as a fourier transform in complex k
space and choosing the integration contour appropriately.

The simplest solution to (10) is

v(r) = [ Gulr, U0 (15)
We are free to add to this any solution to the homogeneous equation
(V2 + k%o =0 (16)
This is the natural way to take into account the unscattered wave
or(r) = (2m) 732k (17)

since this would be the solution to (10) in the absence of a potential. The
general solution is therefore

U(r) = () + [ Gulr WU () (18)

This is the basic integral equation of scattering theory. Its solutions will
have the form

P(r) = ¢r(r) + thsc(r) (19)



The last term is called the “scattered wave.”

There are various techniques for solving an equation like (18). We will
use the method of separation of variables. Solutions of (16) can be written
as sums over “partial waves.”

o1(r) = 3" Ri(ks v) Py (cos ) (20)
(=0

The Legendre polynomials are functions of #, the angle between k and 7.
The radial functions, R;(k;r), satisfy

{1d od UI+1)
rdr dr r2

The solutions of (21) are the spherical Bessel functions, j;, n; and h;. Their
asymptotic behavior is important. As p — o

1
)= L (5= )
p 2

ny(p) 1COS( ﬂ)

N =

!(p Seoslr—y
1

hl(p) — meip

+ kﬂ Ri(k;r) =0 (21)

Only j; is regular at p = 0. It can be used to construct plane wave functions

as follows:
o0

R = 3720+ 1)y (kr) Py (cos 0) (22)
1=0
This formula is important theoretically, but it is not of much use for com-
putation: it converges very slowly for large r. The complex function h; is
the obvious choice to represent outgoing spherical waves.
The Green’s function (14) can be expanded using these functions.

k(I —7']) ZYsz“ ()G (1) (23)

This expansion will enable us to reduce the three-dimension equation (18)
to a one-dimensional equation in the variable r as we shall see presently. It
can be shown that

G,g) (r;7") = —ikgy(kr<)h(krs) (24)

The notation 7~ () means 7 or 7/, whichever is smaller (larger).!

1 Gtudents of electro-magnetism will recognize this as a “patchwork” Green’s function.
See J. D. Jackson, Classical Electrodynamics, Wiley, Sec. 3.9



3.3 The Model

There are very few potentials for which (18) can be solved exactly, and most
of these are quite unrealistic. It can be solved numerically, but an analytic
solution would allow us to do numerical experiments quickly without being
concerned with the complications of this very non-trivial integral equation.
The issue of precision is especially important. The equations of motion that
govern the particle trajectories must be solved numerically. When these
trajectories pass close to the scattering center they become nearly unstable.
Small errors in the calculations can have large effects on their subsequent
paths.

Fortunately there is a potential for which we can obtain exact and in-
teresting solutions. This is the delta-shell potential

U(r)==Xo(r — a) (25)

Here a is the diameter of the shell, and A is a parameter that determines the
strength of the potential. (A negative A makes the potential repulsive, a pos-
itive A, attractive.) The potential is zero inside and outside the sphere, but
the wave functions in the two regions satisfy different boundary conditions.
The wave function outside must decrease like 1/r as r — oo, whereas the
wave function inside must be at least regular at » = 0. The two solutions
must be continuous at r = a. This leads to the following wave function,
which should be compared with (20).

W(r) = g 2\;;7; i A4k ) Py(cos ) (26)

The functions A;(k;r) are obtained from the radial wave equation.

—U(r) + k*| Aj(k;7) =0 (27)

{1dr2d_l(l+1)
rdr dr r2

The curious normalization in (26) is chosen so that if U = 0 and A;(k;r) =
Ji(kr), then from (22)
Y(r) — (2m) 2R

Substituting (23), (22), and (26) into (18), we get the radial equation
that was anticipated in the previous section:

Ai(k;r) = gi(kr) + /OOO G,(j) (r;PYU (") Ay (s ' )r'? do! (28)

10



Our delta-shell potential makes this integration trivial and reduces (28) to
an algebraic equation. For a > r,

Aiksr) = ji(kr) + ikda® A (ks a) ji(kr)hy(ka), (29)
and for r > a,
Ai(k;r) = ji(kr) + ikAa® Ay (k; a) jiy(ka) by (kr). (30)
The constants A;(k;a) are obtained by solving (29) or (30) with r = a

L Ji(ka)
Ak @) = T (e (31)

This potential might describe, in a very rough way, the surface of a
nucleus. Much more important is the fact that the solutions have all the
mathematical properties one would expect from a more realistic potential.
For example they exhibit bound states and resonant scattering states. The
analytic properties of the scattering amplitude are all consistent with the
results of more general scattering theory.

The solution to (18), ¥k (r), is a time-independent wave function, which
is inadequate for reasons already explained. The time-dependent wave func-
tion is obtained with the following argument. If there were no scattering
potential, the incident wave packet, ®(r — vyt,0), would move in the k di-
rection as described in connection with equation (9). At ¢ = 0 it can be
written as

o(r,0) = [ d x(a)6,(r) (32

¢4(r) is the usual plane wave function, so the integral is just a fourier trans-
form. x(q) could be any function that produced a wave packet with the
desired properties. We will use the gaussian

x(a) = (20> oo (k-ay” (33)

™

This has the advantage that it can be easily integrated.
O(r,0) = (2r02) 34k T o —1?/40° (34)

The parameter o is called the “width” of the gaussian.'? The time-dependent
wave function is found by integrating

o(r,1) = [ da x(@é,(r)e ! (35)

2More precisely, o is the half width of |®|2.

11



with wy, = ig?/2m. This can be integrated exactly, but the following ap-
proximation will turn out to be valuable. We expand the frequency w, about
k.

h
= —k)- — (g — k)?
wg=wr + (g — k) 'vk+2m(q )

where v, = hk/m is the group velocity. The last term in wy is of order
Ak/k compared with the second, and we neglect it.!3 Then (35) becomes

eiq'(lr*/vkt)

W = eiwth('r’ — ’Ukt, 0) (36)

o(r,t) = [ dgx(a)
This is the first term in (9), a packet that moves to the right along the
direction of k.
When the packet approaches the scattering center, the effect of the po-
tential U(r) becomes important. We obtain the complete wave function by
simply replacing ¢4(r) in (32) with the complete solution of (18), 14(r).

W(r,t) = [ g xlayg(r)e (37)

This automatically satisfies the time-dependent Schrodinger equation, since
1¢(7) is a time-independent solution with energy eigenvalue hw,. Unfortu-
nately, this last equation cannot be integrated exactly, even if one is lucky
enough to have an exact expression for 9,(r). It can be shown however, that
U(r,t) reduces to (9) in the limit r — co. This argument appears in all the
standard texts. We outline it here because we will use the same technique
to obtain an approximate solution to (37) for small r.

Our solution to the delta-shell potential for » > a, (26) and (30), has the
form of an incident plane wave and an outgoing scattered wave consisting of
an infinite sum of terms proportional to h;(kr). (Of course, all solutions to
(18) have this property outside the range of the potential.) Because of the
asymptotic form of h;(kr) the scattered wave term in (37) becomes, in the
limit r — oo

3 itkq
selr.t) = [ Gtx(@r(ana) e (39)

The function f contains an infinite series of terms proportional to Pj(cos6)
where 0 is the angle between q and 7, but it does not depend on 7.

13This term is responsible for the spreading of the packet. We assume that o is large
enough that spreading is negligible over the time the collision occurs.
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Because of the form of x(q) (equation (33)), the range of integration
will be restricted to values of g lying close to k. The range of integration
is roughly Ak ~ 1/0. It is plausible to assume that f(q7,q) doesn’t vary
much in this interval, so it can be replaced by f(k#, k) and factored out of
the integral.'* This leaves the integrand with a complex phase ¢ = qr — wgt.
We expand the frequency w, about k as before. Then

YR wEt+qr+q- vt

Since the values of q lie close to k, we can replace qr ~ q - kr so that

R wit+q - (kr —vt)
With all these approximations then
3

f(k’f’,k)/ (2i)g/2x(q)eiq(kr’vkt)

ezwkt

Yse(r,t) =

ezwkt

~
~

[k, k)®(kr — vit,0), (39)

which is the second term in equation (9).

We will be especially interested in trajectories that pass close to the
scattering center where this asymptotic expansion is not appropriate. We
can get a better approximation by noting that 1sc(r) has the form

YPse(r) = Z Cihy(kr)Py(cos ).
1

The constants C; are determined by (26), (30), and (31), but their exact
form does not concern us here. The radial functions have the form

gi(p) €
hi(p) = FESI

where g;(p) is an I’th order polynomial in powers of 1/p. Consequently

ezkr

G
Yse(r) = — El: mgl(kr)Pl(cos 0) (40)
In the limit p — oo, g;(p) — 1. Comparison with (6) shows that

fileos0) = 3 o Pi(cos ) (a1)
l

4 There are important circumstances in which this is not true. This comes about when
there are sharp resonant states. See Gotfried Section 16
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We don’t need to make this approximation, however, because we have an
exact solution for ¥sc (7). This enables us to define a “generalized scattering

amplitude,” f(r, k), which is a function of the magnitude of r as well as its
direction.

Flkr) = 3 2o (k) Pr(cos) (12)
l

We can now repeat the derivation of (9) with f(k,r) replacing fi(cos6). The
result is exact (up to r = a) in the sense that it does not involve any large-r
approximations. It is still approximate in the sense that we have replaced
g with k in equations (36) and (39). The error due to this replacement can
be made arbitrarily small by making the the wave packet much larger than
the scattering center.

3.4 Units and Dimensions

There are two lengths that are fundamental to the scattering process. The
first of these is the size of the particles that are scattering. In nuclear and
particle physics these sizes are on the order of 1 fermi = 10~% cm. Nucleons
and charged pions whose size can actually be measured by electron scattering
have radii of roughly 1.4 fm. Complex nuclei typically have radii equal to
1.4 AY/3 fm, where A is the atomic number. Evidently the nucleons pack
together like hard spheres.

Quantum scattering theory attempts to model these complex structures
using potentials. A simple example is the Yukawa potential,

U(r)=V

ar

In this potential V' represents the strength, and 1/« the range of the poten-
tial, or equivalently, the size of the scattering center. Unfortunately, even
this simple function leads to a time-independent Schrodinger equation that
is impossible to solve analytically. For this reason we have adopted the
delta-shell potential

The other fundamental length is the wavelength of the incident particle.
A plane wave in quantum mechanics is ¢ ~ €**, so the natural variable
to represent this length is the inverse of the wave number k = p/h. To get
a feeling for the numbers involved, think of a proton with a mass of 938
MeV/c2. If k = 1 fm™!, the corresponding kinetic energy is 4.6 MeV. This
is an easy energy to achieve, even with relatively primitive accelerators. (At
this energy the proton is moving about 20% the speed of light, a complication
we do not consider here.)

14



These two lengths can be thought of in analogy with optical microscopes.
In order to resolve an object of size ¢ it is necessary to use light with a
wavelength A < . In order to study the internal structure of a nucleon,
it is necessary to use higher energy probe particles with smaller k~'. The
motivation for building higher energy accelerators is basically this, to study
the internal structure of particles with higher resolution.

There are two other sizes that are not fundamental, but rather peculiar to
this calculation. The first of these is the size of the wave packet, o. The pre-
vious discussion of approximations highlights the fact that the momentum
spread in the packet, Ak/k, must be small enough to allow the replacement
q — k. For gaussian wave functions, AxzAk = 1/2, so Ak ~ 1/20. The
packet must also be substantially larger than the scattering center, so o > a.

The potential strength parameter, A\, has units of inverse length. Its
significance will be discussed in the next section.

There are no fundamental units of time in scattering theory. This is
almost a truism, since scattering calculations are often done in a time-
independent formalism. Wave packets introduce a fundamental velocity, the
group velocity v = hk/m, but the packets reach the detectors eventually, we
don’t much care when. We can take advantage of this fact to simplify the
calculations. We introduce a unit of distance z, = 1/k, and a unit of time
to = xo/v; to is obviously the time required for a free particle to travel the
distance 1/k. It is as close as we can come to a fundamental unit of time;
but numerically, (assuming k is measured in fm’s)

o = 1.58 x 10~ Bk 2sec,

an inconceivably small unit. If we agree to measure all distances in units of
To and time in units of ¢,, however, the dimensionless velocity

d(z/,)
d(t/to)

is unity for all free particles.

We can simplify the programming even further by noticing that all dis-
tance variables like r appear in the equations multiplied by k. Likewise the
potential range a is always multiplied by & or A. The size of the wave packet
o gets multiplied by k. As a consequence, there are only three independent
pieces of information that can be input to the program, the dimensionless
numbers ka, ok, and Aa. All of the output can be expressed in dimensionless
ratios such as z/x, and t/t.

You can take advantage of this in one of two ways. The easiest is to
set k = 1 and remember that a, o, and A\ must be in units of k~!. For

15



example, @ = 2 means that the fundamental length, k! is half the size of
the scattering center. The other way is to inter k in units of inverse fermi’s
(or nautical miles, whatever your favorite unit of distance). Then a, o, and
A must be in the same units. Distance and time will be rescaled in the
output and on the plots so that dr/dt = 1.

3.5 Properties of the Potential

The time-independent wave function for the delta-shell potential has some
interesting properties that are investigated in Gottfried’s book.'® 1 will
summarize them without any proofs.

1. There are bound state solutions for positive A. These have negative
energy in general. Pilot wave trajectories are not well suited to bound
state problems, which are really steady state phenomena. Just for the
record, however, if A\a = 2l, + 1, there is a bound state of angular
momentum [, with energy zero. As Aa increases beyond 2[, + 1, the
state becomes more tightly bound. There are bound states for all
values of [ < [.

2. In the limit [Aa| — oo the shell becomes impenetrable: particles inside
can’t get out and particles outside can’t get in. In this limit there can
be positive energy bound states inside the sphere.

3. The total scattering cross section can be calculated from phase shifts
using the general formula

(21 + 1) sin? §;.
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When §; = 7/2 one says that there is an [-wave resonance at the
corresponding energy. At this energy the cross section will have a
maximum value given by 47 (2] + 1)/k? (in addition to contributions
from other partial waves.)

The delta-shell potential produces a complicated set of resonances.
Gottfried works out the properties of the s-wave resonances in some de-
tail. It turns out that there are two kinds, sharp resonances and broad
resonances. Broad resonances appear near ka = 7/2, 37/2, br/2,...
and sharp resonances near ka = w, 2w, 3m,.... The number of reso-
nances is roughly Aa/7.

50p. cit. Section 15
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4. In the vicinity of the sharp resonances, the amplitude varies so rapidly
with energy that the approximation of replacing ¢ with k in (36) and
(39) is no longer valid. This interesting regime is treated in Section 16
of Gottfried’s book.

4 Running the Software

The program is written in MATLAB 6. This is a collection of programming
tools intended to be “all things to all people.” The language itself looks
superficially like Fortran and is optimized for fast, large scale numerical
calculations. Its unique feature is the ability to do matrix calculations with
very compact abstract notation and to dynamically re-size matrices as the
calculation proceeds. Except for these features (which are maddeningly non-
intuitive) the language is easy to learn and fun to use. I have relied on the
text, Mastering Matlab 6.'® The on-line help facility will tell all you need
to know about specific commands and functions.

I have made no attempt to write a user interface. Think of the program
as a “test bed,” which you can rewire to do many different experiments. This
requires that you learn some MATLAB and understand how the program
works. Here are some important things to know. The main routine is called
Pshift. It would be helpful to have the listing in hand while we go over
some details.

Variables declared “global” are common to all subroutines. They are
like “common” variables in Fortran except that they must keep the same
name wherever they appear. They are used here to communicate the various
parameters to the rest of the program. Change them here and you change
them everywhere.

The “turnoff” and “stopclock” variables were originally used for debug-
ging, but they are useful to get a feeling for various parts of the calculation
in isolation. turnoffl controls the incident wave. Set turnoff1=0 to see
what happens if the scattered wave appears (as if by magic) without any
interference from in incident wave. If you just set turnoff2=0, you get the
incident wave without scattering. turnoff3=0 replaces the gaussian wave
packets with plane wave and spherical wave solutions. Finally, stopclock=0
gives the paradoxical situation of trajectories propagating through a time-
independent wave function.

The next lines let you change k, o (called sigma0O), the range of the
potential a (called a0), and A (called, surprise, lambda). The number of

18 Mastering Matlab 6, D. Hanselman and B. Littlefield, Prentice Hall, 2001
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trajectories integrated through the potential is given by nXOs.

The next section of code integrates trajectories through the scattering
process. The center of the wave packet moves from the point z, = tstart*u,
goes through the scattering center z = 0 at ¢ = 0, and continues to z =
tfinish * u. The initial conditions for the trajectories are contained in the
arrays X0 and Z0. These are generated with a gaussian distribution of width
o about the center of the wave packet. There is a table of ten starting loca-
tions in the code. These are useful if you want to check the reproducibility
of the calculations under various circumstances.!”

The equations of motion can be solved numerically by a variety of differ-
ent algorithms. Look for the statement [T,R]=0de23(--- MATLAB has a
suite of seven different solvers for this sort of problem. See the Help menu
under “ODE” for more details. The statement options=odeset(--- al-
lows you to adjust the integration tolerances. I have written my own solver
called MyOde. It is crude algorithm using a fixed step size. The issue of
integration routines is discussed further in the last section.

The following four plots, figure(1) through figure(4), are self-explanatory.
Figure 4 is a 3-d plot with coordinates z, z, and t. You can “pick it up” and
rotate it. The initial and final points on the trajectories are saved in arrays
and written to a file named Results.doc. It contains the initial coordinates
X0 and Z0, the final coordinates Xsave and Zsave, the distance from this
point to the origin Rsave, and the final scattering angle Thetasave. There
is a simple program Pplot that reads this file and histograms the results.
There is no user interface. You can change the code to plot whatever you
like.

The last section produces time dependent plots of the various pilot wave
functions. Figure 5 is a gradient plot (or quiver plot in Matlab terminology)
of the S function. The arrows point in the direction of VS. Contour lines
of constant S are superimposed. Figure 6 is a surface plot of S, and 7 is
a plot of R. The plots are first produced for time ¢ = tmin. The program
then goes into pause mode to give you a chance to study the plots. Press
any key, and the program steps on to t = tmin + At, etc.'® Note that while
in the pause mode the CPU is running at 100%.'° This makes it difficult to
get things done and makes the computer vulnerable to hang-ups.2’

"The random number generator generates a different sequence of numbers each time
the program is run.

8The meaning of this time unit was explained previously.

¥Doing nothing is hard work. You can always interrupt MatLab by pressing Ctrl-c.

20Matlab makes it easy to make movies of sequences of plots like these. Try it if this
sort of thing appeals to you. You can even add music!
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We conclude this section with two technical notes, the first about the
S function. S is really an angle, so from a mathematical point of view it
is infinitely multiple-valued. So far as the physical interpretation is con-
cerned, however, it is unique. For example, if ¢ = €’** then S = hkx and
VS = p. On the other hand, if we try to calculate S numerically, for exam-
ple, S = hlnv /i, we get an S that flip-flops between —7 and +7. MatLab
provides the function unwrap that smooths out these jumps. It only works
in one dimension, however. Unwrapping in two dimensions is an interesting
computational problem. The algorithm I have written is not 100% success-
ful. Occasionally you will see jagged cliffs in the S plots. They are probably
not due to the physics you are investigating. Also note that the gradients
are calculated analytically. They are not angles and do not suffer from this
problem.

The second point has to do with dimensionality. The formalism is three
dimensional in the sense that the full 3-d Schrodinger equation is used. The
starting coordinates are all chosen in the x-z plane, however. Since there is
no spin, the scattering stays in the same plane. In this sense the calculation
is 2-d, and there is no ¢ angle. This is only of concern in interpreting
the differential cross section. For example, a constant scattering amplitude
would give a constant do/d2 in the full 3-d formalism. In this calculation
it produces a constant do /d#.

5 Running the Program Again for the First Time

The program is ready to run. If you are using the Physics Department
network, copy the folder PacketScattering into your own directory. Open
MATLAB with the command matlab &, and set the Current Directory (in
the upper right corner of the MATLAB window) to the directory into which
you have copied the source files. Type Pshift at the MATLAB prompt.

The program is set to generate 100 trajectories with a potential radius
a =1 and a packet width o = 2. It first generates the four trajectory plots,
then draws the three time-dependent plots as explained above. Press any
key and the program will redraw the last three plots with ¢ incremented by
1. You can terminate at any point by pressing Ctrl-c.

Figure 4 is easy to interpret. It shows the trajectories just as you would
draw them. You can look at this plot with your browser without running
the program. It is in the directory as file Trajectories. jpg. Notice the
clear separation between the forward or unscattered particles and those for
which you would calculate a differential cross section.
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Figure 5 is a combination contour plot and quiver plot. The colored lines
are contours of equal S. The arrows are proportional to V.S. Of course
the arrows should always be perpendicular to the contours. This is not
always the case for several reasons. The gradient is calculated analytically
at discrete points on a grid. The contour lines are drawn on the same grid
using some smoothing and interpolation algorithm. If S changes rapidly
in a small region, the contours and arrows can get out of alignment. Also
the horizontal and vertical scales of the plot are not the same so the angles
are distorted slightly. Notice that at first the arrows point “upstream”
corresponding to incident unscattered particles. When ¢ =~ 0 a complicated
interference region develops close to the origin. At later times the outgoing
spherical wave appears as the incident packet moves out of the picture.

Figure 6 shows S as a surface in a 3-d plot. Remember that the mag-
nitude of S has has no dynamical significance. It’s the slope that counts.
Particles, unlike water, always flow up hill, so a plane wave looks like an
incline plane and a spherical wave like a cone.?!

Finally, Figure 7 shows R as a function of time. Of course, R is the
square root of the usual quantum mechanical probability function, so this is
a more conventional view of scattering. Watch for the development of the
outgoing spherical wave. (In this view it looks like a donut.) Notice that
the spherical wave “turns on” around ¢ = 0. This is an important point.
The time-independent solution, equation (6), implies that the incoming and
outgoing waves interfere over all space and consequently over all time as
well. The time-dependent solution automatically insures that the scattered
wave doesn’t develop until the wave packet reaches the target.?? The last
frame is available as a . jpg file. Look for Wave packet.jpg.?3

The Pshift program automatically writes (overwrites actually) the file
Results.doc as described in Section 4. The program Pplot reads the file
and histograms the results. Just type Pplot at the prompt.

211t may be surprising that a wave packet solution produces a flat S. For a free particle,
at least, the packet shape is contained in R and the dynamics are in S. Think of it like
this; the packet is a block that slides with constant velocity up the incline S plane!

22To be consistent we should use a wave packet for the target as well. This point is
discussed at length in Goldberger and Watson, Collision Theory, Wiley 1964. It turns out
to have no effect on the final solution.

ZMATLAB can export graphics in many different formats. Consult Mastering MAT-
LAB for details.
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6 Think and Do

After you have run the program and experimented with some of the ad-
justable parameters, you might want to conduct some independent inves-
tigations. Here is a list of suggested experiments or projects to work on.
Some of these are really physics research, others are more oriented toward
computation. Take your pick.

1. What does quantum scattering really look like in a completely time
independent formalism? This question was investigated extensively in
the 70’s using the impenetrable sphere potential.>* You can model this
by setting stopclock=0. The following claims have been made: (1)
There is no scattering at macroscopic distances, 7.e. all trajectories are
eventually swept forward into the beam. (2) It is still possible to make
sense of the total cross section (not, of course, the differential cross
section). (3) Trajectories with very small impact parameters “crawl”
around the surface of the sphere and become surface waves. (4) There
is a vacuum region directly in front of the sphere just as there would be
in the flow of a compressible fluid. Most of these results were obtained
analytically, often with some semi-classical approximation. See if you
can verify them numerically.

2. Scattering really comes about because of complicated interference be-
tween the incident and scattered wave. See how simple scattering
would be without this interference. First set turnoff2=0. Watch
the wave packet in Figure 7 move across the screen without change
of shape. The gradient plot consists of straight lines. Look at the
scattered wave by setting turnoff1=0.

For the remainder of these experiments keep all the turnoffs and stop-
clock set equal to one.

3. Matlab has many sophisticated graphics features. You might, for ex-
ample, make movies of some scattering process. I would be interested
in seeing the time development of the trajectories in Figure 4. The
point is that particles travel at different speeds through the scatter-
ing region. This seems to violate the conservation of energy; after all,
the conventional potential is zero outside the sphere. The reason for
this apparent violation is that there is an additional effective potential

24H. J. Korsch and R. Mohlenkamp, J. Phys. B:Atom. Molec. Phys., Vol. 11, No 11,
1978 and references therein
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acting outside the sphere. The pilot wave formalism, in fact, can be
thought of as a classical Hamilton-Jacobi mechanics problem with a
potential V' + @ where V is the usual potential that appears in the
Schrodinger equation, and @, the “quantum potential”

4. Study the behavior of the trajectories. Elementary texts often portray
scattering in terms of an impact parameter. According to this view,
the scattering center looks like an archery target. If you hit the red
circle the particle will scatter into the angle Af. This is all wrong, at
least in this formalism.?> The scattering angle depends on the incident
particle’s position, both transverse and longitudinal, with respect to
the center of the wave packet. This effect is well known in the context
of one dimensional scattering.?® So far as I know it has not been
investigated in three dimensions. There is a feature in Pplot that
makes a map of the starting points of the trajectories, color coded
according to their final scattering angle. Typically, those particles that
start out near the front of the packet are more likely to scatter through
small angles or perhaps not scatter at all. Can you say anything more
about this? Can you explain how this comes about??”

5. All this brings me to the central question. Is quantum scattering really
independent of the size (and other details) of the wave packet? With
this program you can set the size to be anything you like to study the
effects.

6. Is it possible to make sense of the differential cross section when there
is only one scattering center? Is it independent of the size of the
packet?

7. All the above exercises should be done, at least at first, using the delta-
sphere potential. You are welcome to try your hand at phase shifts.
The information necessary to do this is contained in the appendix.
This is not exactly “kosher”, because the phase shift formalism is
based on the asymptotic solution and is not expected to be meaningful
near 7 = 0. Nonetheless, the results could be interesting. What is the

Z5As T. S. Elliot put it, “Man can not bear too much reality.”
26C. Dewdney and B. J. Hiley, Found. Phys., 12, 27-48.
2TIf so, will you explain it to me?
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effect, for example, of a resonant partial wave? Inelastic scattering can
be represented phenomonologically with complex phase shifts. What
does inelastic scattering look like in this formalism? (This is another
virgin research topic.)

8. I have written a routine called MyODE that integrates the equations
of motion using a primitive algorithm with fixed step size. This is a
deliberate swindle. More sophisticated algorithms get into trouble at
isolated regions where the phase cancellations are particularly delicate.
My routine avoids this by “goose stepping” through the potential. It
gives results that are qualitatively reasonable; I make no claims about
its precision. MATLAB provides seven different integration routines,
all with different algorithms. You could make a project studying how
well they perform. One way to do this is to integrate forwards and
then backwards to see if, in the words of T. S. Elliot, “In our end is
our beginning.”?8

7 APPENDIX A- File List

The following files must be present in the same directory to run the pro-
grams: fshell, Fvec, gradS, jfile, modulus, MyOde, Pplot, and
Pshift. MatLab automatically links the files when you enter Pshift
on the console.

There are two additional files, Trajectories. jpg and Wave Packet. jpg.
These are picture files intended for promotional purposes. Open them
with your browser.

8 APPENDIX B- Using Phase Shifts

You can run the program with phase shifts rather than the delta-shell
potential. Simply change line 14 in fshell from phaseshifts=0 to
phaseshifts=1. You can inter your own phase shifts at line 105. The
format is d=[d0, d1, d2, ...]. di is the phase shift for the i-th
partial wave. The program currently has a single resonant p-wave
phase shift.

28Four Quartets
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