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Chapter 1

Animated Wave Packet–Wave
Packet Scattering

Jon J.V. Maestri and Rubin H. Landau, with Kirk Rowe

Abstract A simple and explicit technique for the numerical solution of the time-dependent two-particle

Schrödinger equation is developed and applied to wave packet-wave packet scattering in one dimension. The

particle-particle potential can be an arbitrary function of the coordinates of the particles, the initial and

boundary conditions can be arbitrary, and the techniques can be used for any number of dimensions. The

resulting solution is displayed in plots and animations. The lab is supplemented by materials on the web

[1].

1.1 Introduction

Quantum mechanics textbooks often present a time-independent view of a single particle
interacting with an external potential, rather than the more realistic time-dependent view of
two particles interacting with each other. In part, this makes the physics clearer, and in part,
this reflects the difficulty of solving the time-independent two–particle Schrödinger equation
for the motion of wave packets. In the classic quantum mechanics text by Schiff [3], examples
of realistic quantum scattering, such as that on the left in Fig. 1.1, are produced by computer
simulations of wave packets colliding with square potential barriers and wells. Generations
of students have carried memories of these images (or of the film loops containing these
frames [4]) as examples of what realistic quantum scattering looks like.

While the left part of Fig. 1.1 is a good visualization of a quantum scattering processes,
this lab extends the simulations of realistic quantum interactions to include particle–particle
scattering when both particles are represented by wave packets. Although more complicated,
this, presumably, is closer to nature and may illustrate some physics not usually found in
quantum mechanics textbooks. In addition, this extension goes beyond the treatment found
in most computational physics texts which concentrate on highly restricted forms of two-
particle wave packets [7], or one-particle wave packets [8, 9, 10].

The simulations of the time-dependent Schrödinger equation shown by Schiff were based
on the 1967 finite-difference algorithms developed by Goldberg et al. [4]. Those simulations,
while revealing, had problems with stability and probability conservation. A decade later,
Cakmak and Askar [5] solved the stability problem by using a better approximation for the
time derivative. After yet another decade, Visscher [6] solved the probability conservation
problem by solving for the real and imaginary parts of the wave function at slightly different
(“staggered”) times.

In this lab we combine some recent advances in the numerical solution of the two
particle—in contrast to the one particle —time-dependent Schrödinger equation. Other
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Figure 1.1: Left: A time sequence of a Gaussian wave packet scattering from a square
barrier with the mean energy equal to the barrier height, as taken from the textbook by
Schiff. Right: A time sequence of a Gaussian wave packet representing one particle scattering
from another Gaussian wave packet representing a different particle.

than being independent of spin, no assumptions are made regarding the functional form of
the interaction or initial conditions, and, in particular, there is no requirement of separation
into relative and center-of-mass variables.[7] The method is simple, explicit, robust, easy to
modify, memory preserving, and useful in research. However, high precision does require
small time and space steps, and, consequently, long running times. A similar approach for
the time-dependent one-particle Schrödinger equation in a two-dimensional space can be
found in the last chapter of the Computational Physics text [8].

1.2 Two-Particle Schrödinger Equation

We solve the two-particle time-dependent Schrödinger equation

i
∂

∂t
ψ(x1, x2, t) = Hψ(x1, x2, t), (1.1)

H = − 1
2m1

∂2

∂x2
1

− 1
2m2

∂2

∂x2
2

+ V (x1, x2). (1.2)

Here H is the Hamiltonian operator, mi and xi are the mass and position of particle i = 1, 2,
and, for simplicity, we assume a one-dimensional space and set h̄ = 1. Knowledge of the
two-particle wave function ψ(x1, x2, t) permits the calculation of the probability density for
particle 1 being at x1 and particle 2 being at x2 at time t via the standard definition:

ρ(x1, x2, t) = |ψ(x1, x2, t)|2 . (1.3)

The fact that particles 1 and 2 must be located someplace in space leads to the normalization
constraint on the wave function at each instant of time:

P (t) =
∫ +∞

−∞

∫ +∞

−∞
dx1 dx2 |ψ(x1, x2, t)|2 = constant. (1.4)

The simplification of the two-body wave function into a single-particle one ψ(x) is an
approximation unless the system is uncorrelated (in which case the total wave function
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can be written in product form). However, it is possible to deduce meaningful one-particle
densities from the two-particle density by integrating over the other particle:

ρ1(xi, t) =
∫ +∞

−∞
dxj ρ(x1, x2, t), (i �= j = 1, 2). (1.5)

Here we use subscripts on the single-particle densities to distinguish them from the two-
particle density ρ. Of course, the full solution is ρ(x1, x2, t), but as we shall see, it is
somewhat of a challenge to see the physics in a three-variable function, and so sometimes
view ρ1(x1, t) and ρ2(x2, t) as two separate wave packets colliding.

If particles 1 and 2 are identical, then their total wave function should be symmetric
or antisymmetric under interchange of the particles. We impose this condition on the
numerically-determined space wave function ψ(x1, x2), by forming the combinations

ψ
′
(x1, x2) =

1√
2

[ψ(x1, x2) ± ψ(x2, x1)] ⇒ (1.6)

ρ(x1, x2) =
1
2
|ψ(x1, x2)|2 +

1
2
|ψ(x2, x1)|2 ± Re [ψ∗(x1, x2)ψ(x2, x1)] . (1.7)

The cross term in (1.7) places a correlation into the wave function in addition to that caused
by the particle-particle interaction.

1.3 Numerical Method

We solve the two-particle Schrödinger equation (1.2) via a finite difference method which
converts the partial differential equation into a set of simultaneous algebraic equations. First,
we evaluate the dependent variable ψ upon a grid of discrete values for the independent
variables:[4]

ψ(x1, x2, t) = ψ(x1 = l∆x1, x2 = m∆x2, t = n∆t) ≡ ψn
l,m, (1.8)

where l, m, and n are integers. For each time or n value, we determine the spatial part of
the wave function over an entire two-dimensional grid of x1 and x2 values. The time is then
advanced by one step, and the solution over the spatial grid is found again.

The space part of the algorithm is based on Taylor expansions of ψ(x1, x2, t) in both the
x1 and x2 variables up to O(∆x4); for example,

∂2ψ

∂x2
1

� ψ(x1 + ∆x1, x2) − 2ψ(x1, x2) + ψ(x1 − ∆x1, x2)
∆x2

1

+ O(∆x2
1). (1.9)

In discrete notation, the RHS of the Schrödinger equation (1.2) now becomes:

Hψ = −ψl+1,m − 2ψl,m + ψl−1,m

2m1∆x2
1

− ψl,m+1 − 2ψl,m + ψl,m−1

2m2∆x2
2

+ Vlmψl,m. (1.10)

Next, we express the time derivative in (1.1) in terms of finite time differences by taking the
formal solution to the time-dependent Schrödinger equation and making a forward-difference
approximation for time evolution operator:

ψn+1
l,m = e−i∆tHψn

l,m � (1 − i∆tH)ψn
l,m. (1.11)

While simple, this particular approximation scheme is unstable since The term multiplying
ψ has eigenvalue (1 − iE∆t) and so a growing modulus

√
1 + E2∆t2 which increases with

each time step [5] [9]. The improvement developed by Askar and Cakmak [5] is a central
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difference algorithm also based on the formal solution (1.11):

ψn+1
l,m − ψn−1

l,m =
(
e−i∆tH − ei∆tH

)
ψn

l,m � −2i∆tHψn
l,m, (1.12)

⇒ ψn+1
l,m � ψn−1

l,m − 2i

[{
(

1
m1

+
1

m2
)4λ + ∆xVl,m

}
ψn

l,m (1.13)

−λ

{
1

m1
(ψn

l+l,m + ψn
l−1,m) +

1
m2

(ψn
l,m+1 + ψn

l,m−1)
}]

,

where we have assumed ∆x1 = ∆x2 and formed the ratio

λ = ∆t/∆x2. (1.14)

Equation (1.13) is an explicit solution in which the wave function for one future time is
determined from the wave function of two past times. All future times are then generated
by continued iteration, with the wave function at only two time values needed to be stored
simultaneously in memory. In contrast, an implicit solution determines the wave function
for all future times in just one step, yet this one step requires the solution of simultaneous
algebraic equations involving all space and time values. Accordingly, an implicit solution
may be more direct and quicker, yet it requires the inversion of exceedingly large (∼ 1010 ×
1010) matrices.

Although the explicit method outlined above produces a solution which is stable and
second-order accurate in time, in practice it does not conserve probability very well. For
scattering problems, Visscher[6] has deduced an improvement which takes advantage of
the extra degree of freedom provided by the complexity of the wave function to preserve
probability better. If we separate the wave function into real and imaginary parts,

ψn+1
l,m = un+1

l,m + i vn+1
l,m , (1.15)

the algorithm (1.13) separates into the pair of coupled equations:

un+1
l,m = un−1

l,m + 2
[{

(
1

m1
+

1
m2

)4λ + ∆tVl,m

}
vn

l,m (1.16)

−λ

{
1

m1
(vn

l+1,m + vn
l−1,m) +

1
m2

(vn
l,m+1 + vn

l,m−1)
}]

,

vn+1
l,m = vn−1

l,m − 2
[{

(
1

m1
+

1
m2

)4λ + ∆tVl,m

}
un

l,m (1.17)

−λ

{
1

m1
(un

l+1,m + un
l−1,m)

1
m2

(un
l,m+1 + un

l,m−1)
}]

.

Visscher’s advance evaluates the real and imaginary parts of the wave function at slightly
different (staggered) times,

[un
l,m, vn

l,m] = [Reψ(x, t), Imψ(x, t +
1
2
∆t)], (1.18)

and uses a definition for probability density that differs for integer and half-integer time
steps,

ρ(x, t) = |Reψ(x, t)|2 + Imψ(x, t +
∆t

2
) Imψ(x, t − ∆t

2
), (1.19)

ρ(x, t +
∆t

2
) = Reψ(x, t + ∆t)Reψ(x, t) +

∣∣∣∣Imψ(x, t +
∆t

2
)
∣∣∣∣
2

. (1.20)

These definitions reduce to the standard one for infinitesimal ∆t, and provide an algebraic
cancelation of errors so that probability is conserved.
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Table 1: antisymmetrized m-m collision via attractive square well
Parameter Value Interpretation
∆x 0.001 space step
∆t 2.5 × 10−7 time step
k1 +157 particle 1 momentum
k2 −157 particle 2 momentum
σ 0.05 wave packet width
x0

1 467 (0.33 × 1401 steps) initial center of 1
x0

2 934 (0.667 × 1401 steps) initial center of 2
N1 = N2 1399 interior number of space steps
L 1.401 (1401 space steps) box size
T 0.005 (20, 000 time steps) total time
V0 −100, 000 potential depth
α 0.062 potential size

1.4 Simulation

We assume that the particle–particle potential is central and depends only on the relative
distance between particles 1 and 2 (the method can handle any x1 and x2 functional de-
pendences). As a simple case, we assume a square-well dependence of range α and depth
V0:

V (x1, x2) = V0 θ(α − |x1 − x2|). (1.21)

1.4.1 Initial and Boundary Conditions

We model a scattering experiment in which particle 1, initially at x0
1 with momentum k1,

collides with particle 2, initially far away at x0
2 with momentum k2, by assuming a product

of independent wave packets for particles 1 and 2:

ψ(x1, x2, t = 0) = eik1x1 exp[− (x1 − x0
1)

2

4σ2
] × eik2x2 exp[− (x2 − x0

2)
2

4σ2
]. (1.22)

The presence of the Gaussian factors in (1.22) produces a state than is not an eigenstate
of the particle j momentum operators −i∂/∂xj , but instead contains a spread of momenta
about the mean, initial momenta k1 and k2. Yet if the wave packet is made very broad
(σ → ∞), we would obtain momentum eigenstates.

Note, that while the Schrödinger equation may separate into one equation in the relative
coordinate x and another in the center-of-mass coordinate X, the initial condition (1.22)
cannot be written as separate conditions on x and X. Accordingly, a solution of the equation
for each particle coordinate is required [7].

We start the staggered-time algorithm with the real part the wave function (1.22) at
t = 0 and the imaginary part at t = ∆t/2. The initial imaginary part follows by assuming
that ∆t/2 is small enough, and σ is large enough, for the initial time dependence of the
wave packet to be that of the plane wave parts:

Imψ(x1, x2, t =
∆t

2
) = sin

[
k1x1 + k2x2 −

(
k2
1

2m1
+

k2
2

2m2

)
∆t

2

]

× exp−
[
(x1 − x0

1)
2 + (x2 − x0

2)
2

2σ2

]
. (1.23)

In a scattering experiment, the projectile enters from infinity and the scattered particles
are observed at infinity. We model that by solving our partial differential equation within
a box of side L that should be much larger than both the range of the potential and the
width of the initial wave packet. This leads to the boundary conditions

ψ(0, x2, t) = ψ(x1, 0, t) = ψ(L, x2, t) = ψ(x1, L, t) = 0. (1.24)
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The largeness of the box minimizes the effects of the boundary conditions during the collision
of the wave packets. While we shall see some interesting physics when the wave packets hit
the box, this is not related to what happens in an actual scattering experiment.

Some typical parameters used in our tests are given in the Table 1. These parameters
were chosen to be similar to those used in the one-particle studies by Goldberg et al.. Our
space step size ∆x = 0.001 is 1/1000th of the size of the box L, and 1/70th of the size of
the wave packet (

√
2σ � 0.07). Our time step ∆t = 2.5 × 10−7 is 1/20, 000th of the total

time T , and 1/2000th of a typical time for the wave packet (2π/(k2
1/2m1) � 5×10−4). This

small a time step was chosen to obtain a high degree of probability conservation. A larger
step size may be used if your main interest is in viewing the physics.

The combination of time step and space step sizes were determined by trial and error
until values were found which provided stability and precision (too large a ∆x leads to
spurious ripples during interactions). In general, stability is obtained by making ∆t small
enough [6], with a simultaneous changes made in ∆t and ∆x to keep constant the value of

λ =
∆t

∆x2
. (1.25)

Total probability, as determined by a double Simpson’s-rule integration in (1.4), is typically
conserved to 13 decimal places, impressively close to machine precision. In contrast, the
mean energy, for which we do not use a definition optimized for staggered time, is conserved
only to 3 decimal places.

1.4.2 Running the Simulation

As a sample of the results showing the two-particle particle density as a function of both
coordinates for three times, in Fig. 1.2 we show the two-particle density ρ(x1, x2, t) as a
function of the particle positions x1 and x2. This is for an m − 10m collision in which
the heavy particle at x1 hardly moves. The different parts correspond to times 0, T/4,
and T/2, where T is the total interaction time. We see that the x1 position of the peak
of ρ(x1, x2, t) changes very little with time, which means that the heavy particle does not
move much during the collision. In contrast, we see that the x2 peak describing the light
particle increases up to the collision (middle part), and then continues to increase as particle
2 passes through particle 1. We also note that the two particle wave packet becomes broader
in the x2 variable as a consequence of the collision, but that there is little change in the x1

behavior.
As a sample of the results showing the single particle densities superimposed, in Fig. 1.1

we show nine frames from the movie of an attractive m-m collision in which the mean
energy equals one quarter of the well depth. The initial packets are seen to speed up as
they approach each other, and at time 60, the centers have already passed through each
other. After that, a transmitted and reflected wave for each packet is seen to develop (times
66-78). Finally, each packet appears to capture or pick up a part of the other packets and
move off with it (times 110-180).

1.4.3 Codes

We provide you with the C code square.c to run. It contains a square-well potential interac-
tion between the particles and has been trimmed in order to run within limited reasonable
time and memory constraints. The more complete program packets.c contains a Gaussian
potential and has additional features that require significant resources to run. The relation
between the complex wave function in math notation and that in the program is given by
the table below.
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Figure 1.2: The two-particle density ρ(x1, x2) as a function of the particle positions x1

and x2 for an attractive m-10m collision. The different figures correspond to times 0, T/2
(during collision), and T (the end of collision). The heavier particle 1 hardly moves during
the collision, while particle 2 moves and broadens.
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x1, x2, t l ∆x, m ∆x, n ∆t
Reψ(x1, x2, t) un

l,m RePsi[l][m][n] RePsi[401][401][2]

Imψ(x1, x2, t) vn
l,m ImPsi[l][m][n] ImPsi[401][401][2]

RePsi[l][m][0] Reψ(l∆x,m∆x, t) past
RePsi[l][m][1] Reψ(l∆x,m∆x, t + ∆t) present
ImPsi[l][m][0] Imψ(l∆x,m∆x, , t + 1

2∆t) split present
ImPsi[l][m][1] Imψ(l∆x,m∆x, t + 3

2∆t) split future

1.4.4 Internal Control Parameters

The variable xDim is the number of space intervals within our one-dimensional box of size L
(1.24). The integration algorithm requires this number to be odd. The variable choice gives
you a choice of output:

Effect of internal choice parameter
value effect

0 output joint probability density ρ(x1, x2)
1 output two, single-particle densities ρ(x1) and ρ(x2) (default)
2 output correlation function
3 output product of single particle densities

1.4.5 Read-In Control Parameters

Table 1 gave some typical parameters for a high precision research run. The text file in.dat

contains the majority of control parameters supplied with the program. The file must exist
in the same directory as the executable. A typical in.dat file is the second column of num-
bers in table below

Control parameters in file input file in.dat

Parameter Value Definition
Nt 2000 number of time steps
k1 110. momentum magnitude of particle 1
k2 110. momentum magnitude of particle 2 (-x direction)
dx 0.005 space step size ∆x1 = ∆x2 = ∆x = 1/xDIM

dt 4.2E-06 time step ∆t
sig 0.05 wave packet width parameter σ
x01 0.25 location of initial center of particle 1’s wave packet x0

1

x02 0.60 location of initial center of particle 2’s wave packet x0
2

m1 0.5 particle 1’s mass m1

m2 5. particle 2’s mass m2

vmax +90000. potential depth V0 (negative for attractive potential)
alpha 0.062 potential width parameter α
nprint 100 print out data for every nprint time steps
symmetry 0 Flag for wave function symmetry

-1 antisymmetrized
0 no symmetrization

+1 symmetrized

Note that if the time step is made too large, then the algorithm clearly becomes inac-
curate, and actually unstable. A detailed analysis of the numerics indicates that instability
sets when when the product of the time step and potential exceeds approximately 0.38

∆tV0 ≥ 0.38 (1.26)
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1.4.6 Running

Within a shell, you can compile the code with the usual command:

cc -lm square.c -o square Compile code

The -lm option permits access to the math library and the argument of the -o option square

is the name of the file into which the executable will be stored. You may also use gcc for
the gnu compiler or a development studio. Additional information about the compiler and
its options might be obtained after issuing some variant of the commands:

man cc man gcc read the manual pages

cc -flags tell me about the options

The code is run by entering the name of the executable:

man cc, man gcc read the manual pages

square Run square

1.4.7 Output Files

As the program runs, a series of data files are placed in the directory in which the code is
running. We recommend that you keep each run, and the data files that it produces, in
a separate subdirectory. This may keep you from intermixing and confusing several runs,
and let you go back to collect the data again if some processing fails. For the light program
square.c with choice = 1, the output files are

Output File Contents
in.dat Your input data file
E t.dat total energy E (double space integral of Hamiltonian) vs t.
logE t.dat Relative energy change, log10

E(t)−E(0)
E(0)

logP t.dat Relative probability change, log10
P (t)−P (0)

P (0)

params.dat printout of names and values of parameters
run.ti x, ρ1(x), ρ2(x), at time ti

SumRho.dat ρ1(x) + ρ2(x) in rows for a surface plot
V.dat V (x1 − x2) in rows for a surface plot

1.5 Tuning and Exploration

1.5.1 Time Steps

As stated above, a detailed analysis of our integration algorithm finds it to become unstable
if the product of the time step and the potential exceeds approximately 0.38

∆tV0 ≥ 0.38 (1.27)

The instability shows itself by an increasing magnitude of the wave function.
Verify this assertion by running square with successively increasing time steps such that

the product of 0.38 is gradually exceeded. As the time steps are increased, Nt and nprint

should also be adjusted so that the total time duration of the scattering process (Nt*dt) and
the number of output files is approximately the same.

As the product 0.38 is exceeded, the area under the packets should increase both with
subsequent times, or at a fixed time as ∆t increases. Eventually you may run into overflow.



12 CHAPTER 1. ANIMATED WAVE PACKET–WAVE PACKET SCATTERING

What might you expect if the time step was just barely stable (a product close to 0.38)
and the code allowed to run for a long time duration?

1.5.2 Space Steps

Making the space step ∆x too large also leads to inaccuracies. Progressively increase the
space step and look at the signs of the inaccuracy. Since the highest level of precision is
needed when the wave function changes most rapidly, that is, during the interaction of the
two packets, you should notice spurious ripples occurring then. Early publications saw these
ripples and have believed them to be interesting new physics; we see here that they are just
signs of computational inaccuracy.

1.5.3 Probability Conservation

One of the output files produced by running the code is logP t.dat. It gives log10
P (t)−P (0)

P (0)

as a function of time t, where P (t) is the two-particle probability density integrated (with
Simpson’s rule) over all space,

P (t) =
∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 |ψ(x1, x2)|2 . (1.28)

Since P (t)−P (0)
P (0) is the relative error in the integrated probability, the log10 of it is essen-

tially the number of places of precision obtained in the probability. In the original paper[2],
the space and time sizes were adjusted until the total probability was conserved to 13 decimal
places (impressively close to machine precision).

Plot up the data in logP t.dat to see what level of precision your runs are obtaining. Now
try to adjust the time and space step to get 13 decimal places. Note, as indicated in the
theory section, analysis[6] predicts that stability requires

λ = ∆t/∆x2 (1.29)

to be kept approximately constant. This means that we cannot make one smaller without
also making the other smaller, but in proportion!

1.5.4 Wave function Plots

As the program runs progressively through the time loop, after every nprint values of time
a file with the name run.ti will be outputted, where ti is the time. For example, with
nprint=100) we would obtain
run.00001, run.00100, run.00200, ...

For choice=1, each of these data files will consist of three columns with the values of x,
ρ1(x), and ρ2(x). Use your favorite 2D plotting package to make plots of these densities for
a number of interesting times, namely, before, during, and after collision, as well bouncing
off the wall. Overlay both densities on the same graph, using solid and colored dashed lines
to distinguish the two. Your plots should look like those on the right of Fig. 1.1.

We recommend that you make these plots with the popular package gnuplot, since we
will next use gnuplot’s output to make movies. gnuplot is free and is available for both Unix
and Windows. On Unix, you can get information on running it with the
> man gnuplot List manual pages for gnuplot

,
or in the Landau-Fink book. Other plotting packages (such as Canvas and Illustrator) that
do 2D plots and then lets you paste them together for animations would also be fine. Within
gnuplot the densities for one time and all space are plotted with the subcommand:
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plot ’run.00100’ using 1:2 w l, plot ’run.00100’ using 1:3 w lgnuplot subcommand

Investigate

1.5.5 Wave function Movies

In the system described below, movies are made by creating a sequence of plots (frames) for
different times, and then pasting the frame together into an animated gif. When a browser
opens an animated gif file, it automatically displays the various frames in a rapid enough
sequence for you mind’s eye to see the frames as an animation of a continuous event.

Gnuplot itself cannot produce output in the .gif format, so we outputted our results into
an intermediate pixmap format and then used other free program to produce the gif images.
Since there may be hundreds of frames that need to be produced to make a single movie,
with a whole series of command needed for each frame, this would be a tedious task to do
by hand. To this end we wrote a script MakeGifs.script that automates the task. A script
is a file containing a series of commands that might otherwise be given to execute within a
shell. Once in a script, they can now be executed as a single command, and even looped
over via built-in control structures.

MakeGifs.scrip

#! /bin/ksh

unalias rm

integer i=$1

while test i -lt $2

do

if test i -lt 10

then

print "set terminal pbm small color; set output\"$3t=0000$i.ppm\"; set noxtics; set noytics;

set size 1.0, 1.0; set yrange [0:.1];

plot ’run.0000$i’ using 1:2 w lines, ’run.0000$i’ using 1:3 w lines;

" >data0000$i.gnu

gnuplot data0000$i.gnu

ppmquant -map samp_colormap $3t=0000$i.ppm>$3at=0000$i.ppm

ppmtogif -map samp_colormap $3at=0000$i.ppm > $30000$i.gif

rm $3t=0000$i.ppm $3at=0000$i.ppm data0000$i.gnu

i=i+99

fi

if test i -gt 9 -a i -lt 1000

then

print "set terminal pbm small color; set output\"$3t=00$i.ppm\"; set noxtics; set noytics;

set size 1.0, 1.0; set yrange [0:.1];

plot ’run.00$i’ using 1:2 w lines, ’run.00$i’ using 1:3 w lines;

" >data00$i.gnu

gnuplot data00$i.gnu

ppmquant -map samp_colormap $3t=00$i.ppm>$3at=00$i.ppm

ppmtogif -map samp_colormap $3at=00$i.ppm > $300$i.gif

rm $3t=00$i.ppm $3at=00$i.ppm data00$i.gnu

i=i+100

fi

if test i -gt 999 -a i -lt 10000

then

print "set terminal pbm small color; set output\"$3t=0$i.ppm\"; set noxtics; set noytics;

set size 1.0, 1.0; set yrange [0:.1];

plot ’run.0$i’ using 1:2 w lines, ’run.0$i’ using 1:3 w lines;

" >data0$i.gnu

gnuplot data0$i.gnu

ppmquant -map samp_colormap $3t=0$i.ppm>$3at=0$i.ppm

ppmtogif -map samp_colormap $3at=0$i.ppm > $30$i.gif
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rm $3t=0$i.ppm $3at=0$i.ppm data0$i.gnu

i=i+100

fi

if test i -gt 9999 -a i -lt 60001

then

print "set terminal pbm small color; set output\"$3t=$i.ppm\"; set noxtics; set noytics;

set size 1.0, 1.0; set yrange [0:.1];

plot ’run.$i’ using 1:2 w lines, ’run.$i’ using 1:3 w lines;

" >data$i.gnu

gnuplot data$i.gnu

ppmquant -map samp_colormap $3t=$i.ppm>$3at=$i.ppm

ppmtogif -map samp_colormap $3at=$i.ppm > $3$i.gif

rm $3t=$i.ppm $3at=$i.ppm data$i.gnu

i=i+100

fi

done

- The script file, along with the file samp, should be placed in the directory containing
the run.lmn output files.
- The #! line tells the computer that the subsequent commands are in the korn shell.
- The symbol $i indicates that i is an argument to the script. That is, the script is run from
a shell by giving the name of the script with three arguments, the beginning time, the time
Ntimes +1, and the name of the file where you wish your gifs to be stored. For example,
> mscript 1 101 OutFile make gif from times 1 to 101 in OutFile

- The symbol > indicates that the output is directed to the following file.
- The ppmquant command takes a pixmap and maps an exsisting set of colors to new ones.
For this to work, you must have the supplied map file samp in the working directory.
- The counter increments such as i=i+99 at the bottom of the loops should be adjusted by
the user to coincide with the choice of nprint. The first counter should increment by the
value nprint-1, because the first file written is .00001 not .00000.), and the rest of the files by
nprint.

Depending on the number of frames, it may take 10 minutes or so to run this script.
Upon completion of the script, there should be a new set of files of the form OutfileTime.gif.
Here Outfile is your chosen name, Time is the familiar nprint multiples, and .gif indicates
that these are gif files. Note that you can examine any or all of these gif files with a Web
browser.

The final act of movie making is to merge the individual gif files into an animated gif
with the program gifmerge (or another one that you may have available). The movie will
also be a gif file with the .gof extension. It too can be opened with a browser, and that
will automatically cause the browser to flip through the various frames. A typical use of
gifmerge is
> gifmerge -10 *.gif > movie merge all .gif files into movie

Here the -10 separates the frames by 0.1 sec. in actual time, and the * is a wildcard that
will include all ġif files in the present directory. Since we constructed these .gif files with
sequential numbering, gifmerge will paste them together in the proper sequence and place
them in the file movie, that can then be viewed with a browser.

1.5.6 Effect of Symmetrization

Compare movies of the scattering of the wave packet for two equal mass particles when the
wave function has been symmetrized and antisymmetrized. It is said that symmetrization
is somewhat equivalent to including an additional attractive force between the particle,
while antisymmetrization is equivalent to adding a repulsive force or one that causes to
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the particles to exchange positions with each other. Describe the effects you see in your
simulations and see if they can be viewed in terms of attractions and repulsions.

1.5.7 Effect of the Box

Although fascinating to watch the wave packet decompose itself as it collides with the walls
of the box, the collisions with the walls of the box is not something that would occur in
a realistic scattering experiment. However, we need to have the box present to solve the
problem both in a mathematical and numerical sense. Try out different sizes for the box
and see if you can notice any changes in the collision.

1.5.8 Potential Effects

We have chosen a square-well potential for simplicity and to make the interaction abrupt
enough to get some rapid changes in the wave packets. Investigate the effects of

1. Changing the potential from attractive to repulsive.

2. Changing the depth of the attractive potential so that the two particles get hold each
other together for as long a time as possible (quasi bound states).

3. Making the potential “softer”, that is, less abrupt.

Harmonic Oscillator Potential

Investigate the effect of making the potential a harmonic oscillator,

V = −1
2
k|x1 − x2|2. (1.30)

Note that this is a special (and unrealistic) case for which the theory may not be appropriate.
Since this potential gets stronger as the particles get further apart, it has infinite range and
there is no place in space, except the origin, where the particles can be free.

Try out the simulation for positive k (attractive potential). Then the system must be
bound and the two masses attracted towards each other. This means that even if the wave
packets do not have enough energy to reach and bounce off the walls of the box, they must
keep returning to the center of mass of the system.

Try out the simulation for negative k (repulsive potential). Then the system cannot be
bound and the two masses repel each other more as they get further apart. While this may
be physically unrealistic, it should lead to some interesting explosions!

1.5.9 Heavy–Light Particle Collisions

Make one of the particles 10-20 times heavier than the other one and see if your collisions
begin to resemble the collision of the light particle with a barrier (as shown on the left in
Fig. 1.1).

1.5.10 Two-Particle Density Surface Plots (advanced)

Up until now we have been examining superpositions of the single particle densities for
particle one and two, ρ1(x) and ρ2(x), superimposed onto the same x axis. These one-
particle densities were deduced from the two-particle density ρ(x1, x2) by projection, for
example,

ρ(x1) =
∫ +∞

−∞
dx2ρ(x1, x2) (1.31)
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The plot shown in Fig. 1.2 is a surface plot of the two particle probability density ρ(x1, x2, t)
for three values of time t. Looking at these plots should make it clear why we have not been
studying them; the extra degree of freedom here makes it hard to see the physics.

Now study ρ(x1, x2, t) in 3D for some of the runs that you have already studied in
2D. The purpose is to develop some understanding and intuition about these two-particle
functions by relating them to the behaviors found in 2D.

The data used to produce the plots in Fig. 1.2 are from the files Rho 0.dat, Rho .5.dat,
and Rho 1.dat. These files are produced with choice = 1 and the full version of the code in
packets.c (more memory is needed to store these functions). These 3D surface plots were
made with gnuplot, although there are other tools for making 3D plots of data (even Maple).

The Gnuplot commands for making surface plots are discussed on pages 168-170 of
Landau-Fink [14], which we reproduce here.

Gnuplot Surface (3D) Plots

Most of what we have seen in our use of Gnuplot for 2D plots can be extended to 3D or
surface plots. The surface plot command is splot, and it is used in the same manner as
plot—with the obvious extension from (x, y) to (x, y, z). As is rather standard for 3D plots,
a surface is often specified just by giving its z values for successive rows, for example:

-4.043764 Data for 3D plot.
-4.047083

.

.

.

-11.000000

-11.000000

This is typical surface plot data with strips of z values separated by spaces. Since there are
no explicit x and y values given, Gnuplot labels the x and y axes with the row and column
number. Axis labels and titles can be specified explicitly. These data produce hidden line
surfaces via the commands:

gnuplot> set hidden3d Hidden line plot.

gnuplot> set nokey No label.

gnuplot> splot ’gnu3d.data’ w l Surface plot with lines.

While viewing the plot in one of the X Windows, you modify its viewing angle, labels,
or scale by entering text in the command window. The command to do this is:

gnuplot> set view rotx, rotz, scale, scalez

GNUPLOT VIEWS
rotx Rotate about x axis 0 to 180o (default 60).
rotz Rotate about z axis 0 to 360o (default 30).
scale Scale entire plot (default 1.0).
scalez Scale z axis (default 1.0).

The changes occur when you redraw the plot using the replot command. For example, by
issuing the commands:

gnuplot> set view 30, 105 Move over and up.

gnuplot> replot Redraw with the changes.
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As another example for specifying data, we start with a data file containing the z values
for an even 36×16 grid in x and y values. To create our plot we then set the sampling rates.
We take samples as the number of points on the x axis, and isosamples as the corresponding
y sampling rate:

gnuplot> set samples 36 Number along x axis.

gnuplot> set isosample 16 Number along y axis.

gnuplot> splot ’ip’ with lines using z ’%f’

To now get more realistic, below is a sample session in which (x, y, z) data are read in
from the file ImT.dat. A 3D surface is then plotted, but without hidden lines removed, along
with a contour plot projected onto xy plane.
gnuplot> set nokey

gnuplot> set view 120, 25

gnuplot> set xrange [1300:1600]

gnuplot> set yrange [-100:0]

gnuplot> set zrange [-30:30]

gnuplot> set xtics ("1300" 1300, "" 1331.15297, \
"1400" 1400, "" 1434.57747, "1500" 1500, "1600" 1600)

gnuplot> set ytics -100, 20, 0

gnuplot> set ztics -30, 15, 30

gnuplot> set xlabel "Re E (MeV)"

gnuplot> set ylabel "Im E (MeV)"

gnuplot> set param

gnuplot> set contour

gnuplot> set cntrparam levels 10

gnuplot> set terminal postscript eps "Times-Roman" 14

gnuplot> set label "Im T(E)" at 1450, -100, 60

gnuplot> set output "ImT.ps"

gnuplot> splot ’ImT.dat’ w l

The form of the data is:

1300.00000 -0.00100 -0.00001

1303.00000 -0.00100 -0.00000

1306.00000 -0.00100 +0.00000

1.5.11 Correlations during Collisions (research project)

(Based on the undergraduate thesis work of David Vediner.) We have solved the Schrödinger
equation for the two-particle wave function ψ(x1, x2), from which we deduced the two-
particle probability density

ρ(x1, x2, t) = |ψ(x1, x2, t)|2. (1.32)

The basic tenets of quantum mechanics (and probability theory) tell us that if particles 1
and 2 were noninteracting or noncorrelated, then the probability of finding particle 1 at x1

and particle 2 at x2 is just the products of the individual probabilities,

ρ(x1, x2, t)|uncorr = ρ1(x1, t)ρ2(x2, t). (1.33)

Since the two particles in our simulation are interacting, we do not expect (1.33) to be
true, especially at the times during which the particles interact. Accordingly, we define the
correlation function as the difference between the full two-particle density and the product
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of the single-particle densities (which would be the two-particle density if the particles were
uncorrelated):

C(x1, x2, t) = ρ(x1, x2, t) − ρ1(x1, t)ρ2(x2, t). (1.34)

For just one set of parameters, produce output files of ρ(x1, x2, t), ρ1(x1, t)ρ2(x2, t), and
C(x1, x2, t. For for times before, during, and after a collision, compared the 3D surface plots
of each. Comment on whether C(x1, x2, t shows the particle-particle correlations. If you
like, you can modify our previous scripts and procedures to make movies of these functions.
Sample are on the Web site [1].

1.5.12 2D Collisions (research project)

Generalize method. The potential need not be symmetric or central.

1.6 Code Listing Square.c

/*
************************************************************************
* squareSym.c: solution of time-dependent Schroedinger Equation *
* for wave packet - wave packet scattering *
* This is lite version which uses less memory *
* Square potential *and* symmetrization included *
* Copyright 1999, R. Landau, and Jon Maestri, Oregon State University *
* *
* supported by: US National Science Foundation, Northwest Alliance *
* for Computational Science and Engineering (NACSE), *
* US Department of Energy *
************************************************************************
*/

#include <stdio.h> #include <math.h> #include <time.h>

#define xDim 201 /* number space pts, must be odd
for simpson */

FILE *out1, *out2, *out3a, *out3b, *out3c, *out7a, *out7b, *out7c;
FILE *out8, *out10, *out11, *out12, *out13, *out14, *input;

/* Prototypes
*/ /* void Potential(); */ void Initialize(void); void
SolveSE(void); void Output(); void Probability();

/* Global Variables */
double RePsi[xDim][xDim][2], ImPsi[xDim][xDim][2]; double
rho_1[xDim], rho_2[xDim], SumRho[xDim]; double w[3]; double a1,
a2, a3, a4, alpha, dx, dt, Er, Ei, Eri, Eii; double k1, k2, m1,
m2, dm1, dm2, dm12, dm22,dxx2, dtx, con, con2; double Ptot,
Ptot_i; double sol, sig, Rho, v, vmax, x01, x02, y; int choice,
symmetry, Nt, N1, N2, nprint; time_t timei, timef;

/****************************************************************************
* MAIN *
*****************************************************************************/
main()

{

int i, j; time_t timei, timef;

timei = time(NULL); /* start program timing*/

/* inititialize variables */

input = fopen("in.dat", "r");
fscanf(input, "%d %lf %lf %lf %lf", &Nt, &k1, &k2, &dx, &dt);
fscanf(input, "%lf %lf %lf %lf %lf", &sig, &x01, &x02, &m1, &m2);
fscanf(input, "%lf %lf %d %d", &vmax, &alpha, &nprint, &symmetry);
fclose(input);

/* Some constant combos needed in prog */

N1 = xDim-2; /* Max number in sum */ N2 = xDim-2; dm1 = 1./m1; dm2
= 1./m2; dm12 = 0.5/m1; dm22 = 0.5/m2; dxx2 = dx*dx; dtx =
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dt/dxx2; con = -1./(2.*dxx2); con2 = (dm1+dm2)*dtx;

/* Open files */

out2 = fopen("V.dat", "wb"); out8 = fopen("SumRho.dat", "wb");
out10 = fopen("logP_t.dat", "wb"); out11 = fopen("E_t.dat", "wb");
out12 = fopen("logE_t.dat", "wb"); out14 = fopen("params.dat",
"wb");

/* Choice Menu: *
* choice = 0, view Rho (3d) *
* choice = 1, view rho_1 (2d) *
* choice = 2, view corr(x) (2d) (experimental) *
* choice = 3, view rho_1 + rho_2 */

choice = 1;

/* Symmetry Menu:
* symmetry = 0, do not impose syymerty *
* = +1, symmetrize wave function *
* = -1, antisymmetrize wave function */

/* Print initial values to the params file */

fprintf(out14, "choice = %d\n", choice);
fprintf(out14, "symmetry = %d\n", symmetry);
fprintf(out14, "k1 = %lf\n", k1);
fprintf(out14, "k2 = %lf\n", k2);
fprintf(out14, "dx = %lf\n", dx);
fprintf(out14, "dt = %e\n", dt);
fprintf(out14, "sig = %lf\n", sig);
fprintf(out14, "alpha = %lf\n", alpha);
fprintf(out14, "x01 = %lf\n", x01);
fprintf(out14, "x02 = %lf\n", x02);
fprintf(out14, "N1 = %d\n", N1);
fprintf(out14, "N2 = %d\n", N2);
fprintf(out14, "m1 = %lf\n", m1);
fprintf(out14, "m2 = %lf\n", m2);
fprintf(out14, "vmax = %lf\n", vmax);
fprintf(out14, "nprint = %d\n", nprint);
fprintf(out14, "xDim = %d\n", xDim);
fprintf(out14, "Nt = %d\n", Nt);

/* Initialize Simpson integration weights */ /* [end
values not used if psi(ends) = 0] */

w[0] = dx/3.; w[1] = 4.*dx/3.; w[2] = 2.*dx/3.;

/* initialize Potential thru all space Potential();*/

/* initialize Wave packet */ Initialize();

/* Solve Schrodinger equation */ SolveSE();

/*end the time of program */

timef = time(NULL);
fprintf(out14, "\nElapsed time is: %ld seconds\n", timef-timei);

fclose(out8); fclose(out10); fclose(out11); fclose(out12);
fclose(out14);

}

/****************************************************************************
* Energy *
****************************************************************************/

void Energy(int n){

double ai1, ai2, tmp, Erel; int i,j,k,p;

/* calculate total energy of system */

Er = 0.; Ei = 0.; p = 1; /* wf zero at boundaries,
therefore no p,k = 0 simpson terms */ for (i = 1; i <= N1; i++){

k = 1;
if (p == 3)p = 1;
for (j = 1; j <= N2; j++){
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if (k == 3)k = 1;
/* square well in line */
if(alpha >= abs(i-j)*dx){v=vmax;}else{v=0.;}
a1 = -2*(dm1+dm2+dx*dx*v)*(RePsi[i][j][1]*RePsi[i][j][1]

+ImPsi[i][j][1]*ImPsi[i][j][1]);
a2 = dm1*(RePsi[i][j][1]*(RePsi[i+1][j][1]+RePsi[i-1][j][1])

+ImPsi[i][j][1]*(ImPsi[i+1][j][1]+ImPsi[i-1][j][1]));
a3 = dm2*(RePsi[i][j][1]*(RePsi[i][j+1][1]+RePsi[i][j-1][1])

+ImPsi[i][j][1]*(ImPsi[i][j+1][1]+ImPsi[i][j-1][1]));
ai1 = dm1*(RePsi[i][j][1]*(ImPsi[i+1][j][1]+ImPsi[i-1][j][1])

-ImPsi[i][j][1]*(RePsi[i+1][j][1]+RePsi[i-1][j][1]));
ai2 = dm2*(RePsi[i][j][1]*(ImPsi[i][j+1][1]+ImPsi[i][j-1][1])

-ImPsi[i][j][1]*(RePsi[i][j+1][1]+RePsi[i][j-1][1]));
Er = Er + w[k]*w[p]*con*(a1 + a2 + a3);
Ei = Ei + w[k]*w[p]*con*(ai1 + ai2);
k = k+1;
}

p = p+1;
}

/* Normalize */
Er = Er/Ptot_i; Ei = Ei/Ptot_i;

/* make sure number is not too small, gnuplot can’t take them */
if (fabs(Er) <= 1.e-20)Er = 0.;

/* print to "EvsT.dat" file */
fprintf(out11, "%d %e\n", n, Er);

/* find relative Energy */
tmp = fabs((Er/(Eri))-1.);
if (tmp != 0.)Erel = log10(tmp);

/* print to "ErelvsT.dat"*/
fprintf(out12, "%d %e\n", n, Erel);

return; }

/***************************************************************************
* Initialize *
***************************************************************************/

void Initialize() {

double x1, x2, ww, X01, X02; double ai1, ai2; int i, j, k, p;

/* determine omegas in terms of wave vectors */

ww = (k1*k1/(2.*m1) + k2*k2/(2.*m2))*0.5*dt;

/* Initialize wave function, scale initial positions to box
size*/

x1 = 0.; X01 = x01*xDim*dx; X02 = x02*xDim*dx; for (i = 1; i <=
N1; i++){

x1 = x1+dx;
x2 = 0.;
for (j = 1; j <= N2; j++){

x2 = x2+dx;
y = k1*x1-k2*x2;
y = y-ww;
a1 = (x1-X01)/sig;
a2 = (x2-X02)/sig;
a4 = exp(-(a1*a1+a2*a2)/2.);
RePsi[i][j][0] = a4* cos(y);
ImPsi[i][j][0] = a4* sin(y);
}

}

/* Set wf to zero on boundary (should never be called anyway) */

/* at x1 edges RePsi is zero */
for (j = 0; j <= N1+1; j++){

RePsi[N1+1][j][0] = 0.;
RePsi[0][j][0] = 0.;
}

/* at x2 edges RePsi is zero */
for (i = 1; i <= N2; i++){

RePsi[i][N2+1][0] = 0.;
RePsi[i][0][0] = 0.;
}
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/* Find the initial (unnormalized) energy at roughly t = 0 */

Eri = 0.; Eii = 0.; p = 1; for (i = 1; i <= N1; i++){
k = 1;
if (p == 3)p = 1;
for (j = 1; j <= N2; j++){

if (k == 3)k = 1;
/* special square well */
if(alpha >= abs(i-j)*dx){v=vmax;}else{v=0.;}
a1 = -2*(dm1+dm2+dx*dx*v)*(RePsi[i][j][0]*RePsi[i][j][0]

+ImPsi[i][j][0]*ImPsi[i][j][0]);
a2 = dm1*(RePsi[i][j][0]*(RePsi[i+1][j][0]+RePsi[i-1][j][0])

+ImPsi[i][j][0]*(ImPsi[i+1][j][0]+ImPsi[i-1][j][0]));
a3 = dm2*(RePsi[i][j][0]*(RePsi[i][j+1][0]+RePsi[i][j-1][0])

+ImPsi[i][j][0]*(ImPsi[i][j+1][0]+ImPsi[i][j-1][0]));
ai1 = dm1*(RePsi[i][j][0]*(ImPsi[i+1][j][0]+ImPsi[i-1][j][0])

-ImPsi[i][j][0]*(RePsi[i+1][j][0]+RePsi[i-1][j][0]));
ai2 = dm2*(RePsi[i][j][0]*(ImPsi[i][j+1][0]+ImPsi[i][j-1][0])

-ImPsi[i][j][0]*(RePsi[i][j+1][0]+RePsi[i][j-1][0]));
Eri = Eri + w[k]*w[p]*con*(a1 + a2 + a3);
Eii = Eii + w[k]*w[p]*con*(ai1 + ai2);
k = k+1;
}

p = p+1;
}

/* print initial Energy to "params" file */
fprintf(out14, "E (unnormalized) initial = %lf\n", Eri);
fprintf(out14, "E imaginary intitial = %lf\n", Eii);

}

/************************************************************************
* Output *
************************************************************************/

void Output(n){

int i, j; char s[] = "run.00001";

/* Create a unique file name with data for each time step */

if (n < 10){
s[8] = n+48;
}

if (n < 100 && n > 9){
s[7] = (n/10)+48;
s[8] = (n%10)+48;
}

if (n < 1000 && n > 99){
s[6] = (n/100)+48;
s[7] = (((n%100))/10)+48;
s[8] = (n%10)+48;
}

if (n < 10000 && n > 999){
s[5] = (n/1000)+48;
s[6] = (((n%1000))/100)+48;
s[7] = (((n%100))/10)+48;
s[8] = (n%10)+48;
}

if (n < 100000 && n > 9999){
s[4] = (n/10000)+48;
s[5] = (((n%10000))/1000)+48;
s[6] = (((n%1000))/100)+48;
s[7] = (((n%100))/10)+48;
s[8] = (n%10)+48;
}

/* Print probability vs position data at each time */

if (choice == 0){ if (n == 1){ out1 = fopen(s,"wb");
for (i = 1; i <= N2; i++){

for (j = 1; j <= N2; j++){
Rho = RePsi[i][j][0]*RePsi[i][j][1]

+ImPsi[i][j][0]*ImPsi[i][j][0];
/* Impose symmetry or antisymmetry */

Rho = Rho + symmetry*(RePsi[i][j][0]*RePsi[j][i][1]
+ ImPsi[i][j][0]*ImPsi[j][i][0]);

if (Rho < 1.e-20)Rho = 1.e-20;
fprintf(out1, "%e\n", Rho);



22 CHAPTER 1. ANIMATED WAVE PACKET–WAVE PACKET SCATTERING

}
fprintf(out1, "\n");
}

fclose(out1);
}

out1 = fopen(s,"wb");
for (i = 1; i <= N2; i++){

for (j = 1; j <= N2; j++){
Rho = RePsi[i][j][0]*RePsi[i][j][1]

+ImPsi[i][j][0]*ImPsi[i][j][0];
/* Impose symmetry or antisymmetry */

Rho = Rho + symmetry*(RePsi[i][j][0]*RePsi[j][i][1]
+ ImPsi[i][j][0]*ImPsi[j][i][0]);

if (Rho < 1.e-20)Rho = 1.e-20;
fprintf(out1, "%e\n", Rho);
}

fprintf(out1, "\n");
}

fclose(out1);
}

if (choice == 1){ out1 = fopen(s,"wb");
for (i = 1; i <= N1; i++){

if (rho_1[i] < 1.e-20)rho_1[i] = 1.e-20;
if (rho_2[i] < 1.e-20)rho_2[i] = 1.e-20;
fprintf(out1, "%d %e %e\n", i, rho_1[i], rho_2[i]);
}

fclose(out1);
}

/* if (choice == 2){ out1 = fopen(s,"wb");
for (i = 1; i <= N2; i++){

if (rho_1[i] < 1.e-20)rho_1[i] = 1.e-20;
if (rho_2[i] < 1.e-20)rho_2[i] = 1.e-20;
fprintf(out1, "%d %e %e\n", i, corr[i]);
}

fclose(out1);
}

*/ if (choice == 3){ out1 = fopen(s,"wb");
for (i = 1; i <= N1; i++){

sol = rho_2[i]+rho_1[i];
if (sol < 1.e-20)sol = 1.e-20;
fprintf(out1, "%d %e\n", i, sol);
}

fclose(out1);
}

/* Print out some data sets for time = 1 */

if (n == 1){
/* print out potential */

for (i = 1; i <= N1; i = i+10){
for (j = 1; j <= N2; j = j+10){

/* special square well */
if (alpha>=abs(i-j)*dx){v=vmax;}else{v=0.;}
fprintf(out2, "%e\n", v);
}

fprintf(out2, "\n");
}

}
fclose(out2);

}

/****************************************************************************
* Potential- now square *
****************************************************************************

void Potential() {

double tmp; int i, j;

tmp = alpha/dx;

for (i = 0; i <= N1+1; i++){
for (j = 0; j <= N2+1; j++) {

if (abs(i-j)*dx <= alpha) v[i][j] = vmax;
else v[i][j] = 0.;

} }

}

*/
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/*****************************************************************************
* Probability *
*****************************************************************************/

void Probability(int n){ double tmp, Prel, x; int i,j,k,p;

/* initialize the single probability arrays to zero */ for (i = 0;
i <= N1+1; i++){

rho_1[i] = 0.;
rho_2[i] = 0.;

/* corr[i] = 0.; */ }

/* Normalize Rho, important for Correlation functions */ Ptot =
0.; Prel = 0.; p = 1; for (i = 1; i <= N1; i++){

k = 1;
if (p == 3)p = 1;
for (j = 1; j <= N2; j++){

Rho = RePsi[i][j][0]*RePsi[i][j][1]
+ImPsi[i][j][0]*ImPsi[i][j][0];

/* Impose symmetry or antisymmetry */
Rho = Rho + symmetry*(RePsi[i][j][0]*RePsi[j][i][1]

+ ImPsi[i][j][0]*ImPsi[j][i][0]);
if (k == 3)k = 1;
(Ptot) = (Ptot) + w[k]*w[p]*Rho;
k = k+1;

}
p = p+1;

}

if (n == 1)(Ptot_i) = (Ptot); /* Assign initial
probability */ /* Renormalize Rho, before inlined for (i = 1; i <=
N1; i++){for (j = 1; j <= N2; j++){ Rho[i][j] =
Rho[i][j]/(Ptot);}}*/

/* Integrate out 1D probabilites from 2D */

p = 1; for (i = 1; i <= N1; i++){
k = 1;
if (p == 3)p = 1;
for (j = 1; j <= N2; j++){

if (k == 3)k = 1;
Rho = RePsi[i][j][0]*RePsi[i][j][1]

+ImPsi[i][j][0]*ImPsi[i][j][0];
/* Impose symmetry or antisymmetry */

Rho = Rho + symmetry*(RePsi[i][j][0]*RePsi[j][i][1]
+ ImPsi[i][j][0]*ImPsi[j][i][0]);

rho_1[i] = rho_1[i] + w[k]*Rho;
Rho = RePsi[j][i][0]*RePsi[j][i][1]

+ImPsi[j][i][0]*ImPsi[j][i][0];
/* Impose symmetry or antisymmetry */

Rho = Rho + symmetry*(RePsi[j][i][0]*RePsi[i][j][1]
+ ImPsi[j][i][0]*ImPsi[i][j][0]);

rho_2[i] = rho_2[i] + w[k]*Rho;
k = k+1;

}
/* sum 1D probabilities and print to file */

SumRho[i] = rho_1[i] + rho_2[i];
if (fabs(SumRho[i]) < 1.e-20) SumRho[i] = 0.;
if (i%10 == 0) fprintf(out8, "%e\n", SumRho[i]);
p = p+1;
}

fprintf(out8, "\n");

/* find relative probability and print it to file */

tmp = fabs(((Ptot)/(Ptot_i ))-1.);
if (tmp != 0.) Prel= log10(tmp);
fprintf(out10, "%d %e\n", n, Prel);

/* Determine 1 particle correlation function *
for i+j fixed (on other diagnol) vs x = i-j

if (n == Nt/2){ for (i = 1; i <= N1; i = i+5)
{
j = N1+1-i;
x = i-j;
x = fabs(x);

if ((rho_1[i] != 0.)&&(rho_2[j] != 0.))
corr[i] = Rho[i][j]/rho_1[i]/rho_2[j];

if ((rho_1[j] != 0.)&&(rho_2[i] != 0.))
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corr[i] = corr[i]+Rho[j][i]/rho_1[j]/rho_2[i];
if (corr[i] != 0.) corr[i] = log10(fabs(corr[i]));
fprintf(out13, "%lf %e\n", x, corr[i]);
}

fprintf(out13, "\n"); } */ }

/*****************************************************************************
* SolveSE *
*****************************************************************************/

void SolveSE(){

/* solve time dependent Schroedinger equation */

int n, i, j; char s[] = "ru21.0001"; FILE *out;

/* Start of the loop that finds the probability at each time step
*/

for (n = 1; n <= Nt;n++){
/* compute real part of WF */
for (i = 1; i <= N1; i++){

for (j = 1; j <= N2; j++){
/* special square well */

if (alpha>=abs(i-j)*dx){v=vmax;}else{v=0.;}
a2 = dt*v*ImPsi[i][j][0]+con2*ImPsi[i][j][0];
a1 = dm12*(ImPsi[i+1][j][0]+ImPsi[i-1][j][0])

+dm22*(ImPsi[i][j+1][0]+ImPsi[i][j-1][0]);
RePsi[i][j][1] = RePsi[i][j][0]-dtx*a1+2.*a2;

/* compute probability density (old, now Rho inlined)
if (n%(nprint) == 0|n == 1|n == Nt/2|n == Nt)
Rho[i][j] = RePsi[i][j][0]*RePsi[i][j][1]

+ImPsi[i][j][0]*ImPsi[i][j][0]; */
}

}

/*Integrate out all the different Probabilities */
if (n%(nprint) == 0|n == 1|n == Nt/2|n == Nt) Probability(n);

/* imaginary part of wave packet is next */
for (i = 1; i <= N1; i++){

for (j = 1; j <= N2; j++){
/*special square well */

if (alpha>=abs(i-j)*dx){v=vmax;}else{v=0.;}
a2 = dt*v*RePsi[i][j][1]+con2*RePsi[i][j][1];
a1 = dm12*(RePsi[i+1][j][1]+RePsi[i-1][j][1])

+dm22*(RePsi[i][j+1][1]+RePsi[i][j-1][1]);
ImPsi[i][j][1] = ImPsi[i][j][0]+dtx*a1-2.*a2 ;

}
}

/* Find Energy */
if (n%(nprint) == 0|n == 1) Energy(n);

/* Generate data files (most of them) */
if (n%(nprint) == 0|n == 1|n == Nt/2|n == Nt) Output(n);

/* new iterations are now the old ones, recycle */
for (i = 1; i <= N1; i++){

for (j = 1; j <= N2; j++){
ImPsi[i][j][0] = ImPsi[i][j][1];
RePsi[i][j][0] = RePsi[i][j][1];
}

}
}

}
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