Surveys All of CP, Separate Digital & eBook Versions

Computational Physics, 3rd Ed

Problem Solving with Python

Rubin H Landau, Manuel J Paez & Cristian Bordeianu

© Wiley-VCH Verlag GmbH & Co., 2015 (buy here)

Multifaceted Video Lecture Package

Contents

1 Introduction 1
 1.1 Computational Physics & Computational Science 1
 1.2 This Book’s Subjects 3
 1.3 This Book’s Problems 4
 1.4 This Book’s Language: The Python Ecosystem 8
 1.4.1 Python Packages (Libraries) 9
 1.4.2 This Book’s Packages 9
 1.4.3 The Easy Way: Python Distributions 11
 1.5 Python’s Visualization Tools 12
 1.5.1 Visual (VPython)’s 2-D Plots 14
 1.5.2 Vpython’s Animations 16
 1.5.3 Matplotlib’s 2-D Plots 17
 1.5.4 Matplotlib’s 3-D Surface Plots 21
 1.5.5 Matplotlib’s Animations 24
 1.5.6 Mayavi’s Visualizations Beyond Plotting* 26
 1.6 Plotting Exercises 29
 1.7 Python’s Algebraic Tools 30

2 Computing Software Basics 33
 2.1 Making Computers Obey 33
 2.2 Programming Warmup 35
 2.2.1 Structured & Reproducible Program Design 36
 2.2.2 Shells, Editors and Execution 38
 2.3 Python I/O 39
 2.4 Computer Number Representations (Theory) 40
 2.4.1 IEEE Floating-Point Numbers 41
 2.4.2 Python and the IEEE 754 Standard 47
 2.4.3 Over & Underflow Exercises 48
 2.4.4 Machine Precision (Model) 49
 2.4.5 Experiment: Your Machine’s Precision 50
 2.5 Problem: Summing Series 50
 2.5.1 Numerical Summation (Method) 51
 2.5.2 Implementation and Assessment 52
3 Errors & Uncertainties in Computations 53
3.1 Types of Errors (Theory) 53
3.1.1 Model for Disaster: Subtractive Cancellation 55
3.1.2 Subtractive Cancellation Exercises 56
3.1.3 Round-off Errors 57
3.1.4 Round-off Error Accumulation 58
3.2 Error in Bessel Functions (Problem) 59
3.2.1 Numerical Recursion (Method) 60
3.2.2 Recursion Relations Assessment 61
3.3 Experimental Error Investigation 62
3.3.1 Error Assessment 65

4 Monte Carlo: Randomness, Walks & Decays 69
4.1 Deterministic Randomness 69
4.2 Random Sequences (Theory) 69
4.2.1 Random-Number Generation (Algorithm) 70
4.2.2 Implementation: Random Sequences 72
4.2.3 Assessing Randomness and Uniformity 73
4.3 Random Walks (Problem) 75
4.3.1 Random-Walk Simulation 76
4.3.2 Implementation: Random Walk 77
4.4 Extension: Protein Folding & Self-Avoiding Random Walks 79
4.5 Spontaneous Decay (Problem) 80
4.5.1 Discrete Decay (Model) 81
4.5.2 Continuous Decay (Model) 82
4.5.3 Decay Simulation 82
4.6 Decay Implementation and Visualization 84

5 Differentiation & Integration 85
5.1 Differentiation 85
5.2 Forward Difference (Algorithm) 86
5.3 Central Difference (Algorithm) 87
5.4 Extrapolated Difference (Algorithm) 87
5.5 Error Assessment 88
5.6 Second Derivatives (Problem) 89
5.6.1 Second-Derivative Assessment 90
5.7 Integration 90
5.8 Quadrature as Box Counting (Math) 91
5.9 Algorithm: Trapezoid Rule 93
5.10 Algorithm: Simpson’s Rule 94
5.11 Integration Error (Assessment) 95
5.12 Algorithm: Gaussian Quadrature 97
5.12.1 Mapping Integration Points 98
5.12.2 Gaussian Points Derivation 99
5.12.3 Integration Error Assessment 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Higher-Order Rules (Algorithm)</td>
<td>103</td>
</tr>
<tr>
<td>5.14</td>
<td>Monte Carlo Integration by Stone Throwing</td>
<td>103</td>
</tr>
<tr>
<td>5.14.1</td>
<td>Stone Throwing Implementation</td>
<td>104</td>
</tr>
<tr>
<td>5.15</td>
<td>Mean Value Integration (Theory & Math)</td>
<td>104</td>
</tr>
<tr>
<td>5.16</td>
<td>Integration Exercises</td>
<td>106</td>
</tr>
<tr>
<td>5.17</td>
<td>Multidimensional Monte Carlo Integration (Problem)</td>
<td>108</td>
</tr>
<tr>
<td>5.17.1</td>
<td>Multi Dimension Integration Error Assessment</td>
<td>109</td>
</tr>
<tr>
<td>5.17.2</td>
<td>Implementation: 10-D Monte Carlo Integration</td>
<td>109</td>
</tr>
<tr>
<td>5.18</td>
<td>Integrating Rapidly Varying Functions (Problem)</td>
<td>110</td>
</tr>
<tr>
<td>5.19</td>
<td>Variance Reduction (Method)</td>
<td>110</td>
</tr>
<tr>
<td>5.20</td>
<td>Importance Sampling (Method)</td>
<td>110</td>
</tr>
<tr>
<td>5.21</td>
<td>Von Neumann Rejection (Method)</td>
<td>111</td>
</tr>
<tr>
<td>5.21.1</td>
<td>Simple Random Gaussian Distribution</td>
<td>113</td>
</tr>
<tr>
<td>5.22</td>
<td>Nonuniform Assessment</td>
<td>113</td>
</tr>
<tr>
<td>5.22.1</td>
<td>Implementation</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>Matrix Computing</td>
<td>117</td>
</tr>
<tr>
<td>6.1</td>
<td>Problem 3: N-D Newton-Raphson; Two Masses on a String</td>
<td>117</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Theory: Statics</td>
<td>118</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Algorithm: Multidimensional Searching</td>
<td>119</td>
</tr>
<tr>
<td>6.2</td>
<td>Why Matrix Computing?</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>Classes of Matrix Problems (Maths)</td>
<td>122</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Practical Matrix Computing</td>
<td>124</td>
</tr>
<tr>
<td>6.4</td>
<td>Python Lists as Arrays</td>
<td>126</td>
</tr>
<tr>
<td>6.5</td>
<td>Numerical Python (NumPy) Arrays</td>
<td>127</td>
</tr>
<tr>
<td>6.5.1</td>
<td>NumPy’s linalg Package</td>
<td>131</td>
</tr>
<tr>
<td>6.6</td>
<td>Exercise: Testing Matrix Programs</td>
<td>134</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Matrix Solution of the String Problem</td>
<td>137</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Explorations</td>
<td>138</td>
</tr>
<tr>
<td>7</td>
<td>Trial-and-Error Searching & Data Fitting</td>
<td>141</td>
</tr>
<tr>
<td>7.1</td>
<td>Problem 1: A Search for Quantum States in a Box</td>
<td>141</td>
</tr>
<tr>
<td>7.2</td>
<td>Algorithm: Trial-and-Error Roots via Bisection</td>
<td>143</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Implementation: Bisection Algorithm</td>
<td>144</td>
</tr>
<tr>
<td>7.3</td>
<td>Improved Algorithm: Newton-Raphson Searching</td>
<td>145</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Newton-Raphson with Backtracking</td>
<td>147</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Implementation: Newton-Raphson Algorithm</td>
<td>148</td>
</tr>
<tr>
<td>7.4</td>
<td>Problem 2: Temperature Dependence of Magnetization</td>
<td>148</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Searching Exercise</td>
<td>150</td>
</tr>
<tr>
<td>7.5</td>
<td>Problem 3: Fitting An Experimental Spectrum</td>
<td>150</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Lagrange Implementation, Assessment</td>
<td>153</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Cubic Spline Interpolation</td>
<td>154</td>
</tr>
<tr>
<td>7.6</td>
<td>Problem 4: Fitting Exponential Decay</td>
<td>156</td>
</tr>
<tr>
<td>7.7</td>
<td>Least-Squares Fitting (Theory)</td>
<td>158</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Theory and Implementation</td>
<td>160</td>
</tr>
</tbody>
</table>
7.8 Exercises: Fitting Exponential Decay, Heat Flow & Hubble’s Law 162
7.8.1 Linear Quadratic Fit 165
7.8.2 Problem 5: Nonlinear Fit to a Breit-Wigner 167

8 Solving Differential Equations; Nonlinear Oscillations 171
8.1 Free Nonlinear Oscillations 171
8.2 Nonlinear Oscillators (Models) 172
8.3 Types of Differential Equations (Math) 173
8.4 Dynamic Form for ODE’s (Theory) 175
8.5 ODE Algorithms 177
8.5.1 Euler’s Rule 178
8.6 Runge-Kutta Rule 178
8.7 ABM Predictor-Corrector Rule 183
8.7.1 Assessment: rk2 versus rk4 versus rk45 185
8.8 Solution for Nonlinear Oscillations (Assessment) 187
8.8.1 Precision Assessment: Energy Conservation 188
8.9 Extensions: Nonlinear Resonances, Beats, Friction 189
8.9.1 Friction (Model) 189
8.9.2 Resonances & Beats: Model, Implementation 189
8.10 Extension: Time-Dependent Forces 190

9 ODE Applications 193
9.1 Problem: Quantum Eigenvalues in Arbitrary Potential 193
9.1.1 Model: Nucleon in a Box 194
9.2 Algorithm: Eigenvalues via ODE Solver + Search 195
9.2.1 Numerov Algorithm for Schrödinger ODE 197
9.2.2 Implementation 200
9.3 Explorations 203
9.4 Problem: Classical Chaotic Scattering 204
9.4.1 Model and Theory 204
9.4.2 Implementation 206
9.4.3 Assessment 208
9.5 Problem: Balls Falling Out of the Sky 209
9.6 Theory: Projectile Motion with Drag 209
9.6.1 Simultaneous Second-Order ODE’s 210
9.6.2 Assessment 211
9.7 Exercises: 2- & 3-Body Planet Orbits & Chaotic Weather 211

10 High-Performance Hardware & Parallel Computers 215
10.1 High-Performance Computers 215
10.2 Memory Hierarchy 216
10.3 The Central Processing Unit 219
10.4 CPU Design: Reduced Instruction Set Processors 220
10.5 CPU Design: Multiple-Core Processors 221
10.6 CPU Design: Vector Processors 222
10.7 Introduction to Parallel Computing 223
10.8 Parallel Semantics (Theory) 223
10.9 Distributed Memory Programming 226
10.10 Parallel Performance 227
10.10.1 Communication Overhead 229
10.11 Parallelization Strategies 230
10.12 Practical Aspects of MIMD Message Passing 231
10.12.1 High-Level View of Message Passing 232
10.12.2 Message Passing Example & Exercise 234
10.13 Scalability 236
10.13.1 Scalability Exercises 238
10.14 Data Parallelism and Domain Decomposition 239
10.14.1 Domain Decomposition Exercises 242
10.15 The IBM Blue Gene Supercomputers 244
10.16 Exascale Computing via Multinode-Multicore-GPU’s 245

11 Applied HPC: Optimization, Tuning & GPU Programming 247
11.1 General Program Optimization 247
11.1.1 Programming for Virtual Memory 248
11.1.2 Optimization Exercises 248
11.2 Optimized Matrix Programming with NumPy 251
11.2.1 NumPy Optimization Exercises 253
11.3 Empirical Performance of Hardware 253
11.3.1 Racing Python versus Fortran/C 255
11.4 Programming for the Data Cache (Method) 262
11.4.1 Exercise 1: Cache Misses 262
11.4.2 Exercise 2: Cache Flow 263
11.4.3 Exercise 3: Large-Matrix Multiplication 264
11.5 Graphical Processing Units for High Performance Computing 265
11.5.1 The GPU Card 266
11.6 Practical Tips for Multicore & GPU Programming 267
11.6.1 CUDA Memory Usage 268
11.6.2 CUDA Programming 270

12 Fourier Analysis: Signals & Filters 275
12.1 Fourier Analysis of Nonlinear Oscillations 275
12.2 Fourier Series (Math) 276
12.2.1 Examples: Sawtooth & Half-Wave Functions 278
12.3 Exercise: Summation of Fourier Series 279
12.4 Fourier Transforms (Theory) 279
12.5 The Discrete Fourier Transform 281
12.5.1 Aliasing (Assessment) 285
12.5.2 Fourier Series DFT (Example) 287
12.5.3 Assessments 288
12.5.4 Nonperiodic Function DFT (Exploration) 290
12.6 Filtering Noisy Signals 290

12.7 Noise Reduction via Autocorrelation (Theory) 290

12.7.1 Exercises 293

12.8 Filtering with Transforms (Theory) 294

12.8.1 Digital Filters: Windowed Sinc Filters ○ 296

12.9 The Fast Fourier Transform Algorithm (FFT) ○ 298

12.9.1 Bit Reversal 301

12.10 FFT Implementation 303

12.11 FFT Assessment 304

13 Wavelet & Principal Components Analyses: Nonstationary Signals & Data Compression 307

13.1 Problem: Spectral Analysis of Nonstationary Signals 307

13.2 Wavelet Basics 308

13.3 Wave Packets and Uncertainty Principle (Theory) 309

13.3.1 Wave Packet Assessment 311

13.4 Short-Time Fourier Transforms (Math) 311

13.5 The Wavelet Transform 313

13.5.1 Wavelet Basis Functions 313

13.5.2 Continuous Wavelet Transform 317

13.6 Discrete Wavelet Transforms, Multi Resolution Analysis ○ 318

13.6.1 Pyramid Scheme Implementation ○ 323

13.6.2 Daubechies Wavelets via Filtering 327

13.6.3 DWT Implementation and Exercise 330

13.7 Principal Components Analysis 333

13.7.1 Demonstration of Principal Component Analysis 334

13.7.2 PCA Exercises 337

14 Nonlinear Population Dynamics 339

14.1 Bug Population Dynamics 339

14.2 The Logistic Map (Model) 339

14.3 Properties of Nonlinear Maps (Theory & Exercise) 342

14.3.1 Fixed Points 342

14.3.2 Period Doubling, Attractors 343

14.4 Mapping Implementation 344

14.5 Bifurcation Diagram 345

14.5.1 Implementation 346

14.5.2 Visualization Algorithm: Binning 346

14.5.3 Feigenbaum Constants (Exploration) 348

14.6 Logistic Map Random Numbers (Exploration) 348

14.7 Other Maps (Exploration) 349

14.8 Signals of Chaos: Lyapunov Coefficients & Shannon Entropy ○ 349

14.9 Coupled Predator-Prey Models 354

14.10 Lotka-Volterra Model 354

14.10.1 Lotka-Volterra Assessment 357
14.11 Predator-Prey Chaos 357
14.11.1 Exercises 359
14.11.2 LVM with Prey Limit 359
14.11.3 LVM with Predation Efficiency 360
14.11.4 LVM Implementation and Assessment 361
14.11.5 Two Predators, One Prey (Exploration) 362

15 Continuous Nonlinear Dynamics 363
15.1 Chaotic Pendulum 363
15.1.1 Free Pendulum Oscillations 364
15.1.2 Solution as Elliptic Integrals 365
15.1.3 Implementation and Test: Free Pendulum 365
15.2 Visualization: Phase Space Orbits 366
15.2.1 Chaos in Phase Space 368
15.2.2 Assessment in Phase Space 371
15.3 Exploration: Bifurcations of Chaotic Pendulums 373
15.4 Alternate Problem: The Double Pendulum 376
15.5 Assessment: Fourier/Wavelet Analysis of Chaos 378
15.6 Exploration: Alternate Phase Space Plots 378
15.7 Further Explorations 379

16 Fractals & Statistical Growth Models 383
16.1 Fractional Dimension (Math) 383
16.2 The Sierpiński Gasket (Problem 1) 384
16.2.1 Sierpiński Implementation 385
16.2.2 Assessing Fractal Dimension 385
16.3 Growing Plants (Problem 2) 386
16.3.1 Self-Affine Connection (Theory) 386
16.3.2 Barnsley’s Fern Implementation 388
16.3.3 Self-Affinity in Trees Implementation 389
16.4 Ballistic Deposition (Problem 3) 390
16.4.1 Random Deposition Algorithm 390
16.5 Length of British Coastline (Problem 4) 391
16.5.1 Coastlines as Fractals (Model) 392
16.5.2 Box Counting Algorithm 393
16.5.3 Coastline Implementation and Exercise 393
16.6 Correlated Growth, Forests, Films (Problem 5) 395
16.6.1 Correlated Ballistic Deposition Algorithm 395
16.7 Globular Cluster (Problem 6) 396
16.7.1 Diffusion-Limited Aggregation Algorithm 397
16.7.2 Fractal Assessment of DLA or a Pollock 399
16.8 Fractals in Bifurcation Plot (Problem 7) 400
16.9 Fractals from Cellular Automata 401
16.10 Perlin Noise Adds Realism 403
16.10.1 Ray Tracing Algorithms 404
14.11 Predator-Prey Chaos 357
14.11.1 Exercises 359
14.11.2 LVM with Prey Limit 359
14.11.3 LVM with Predation Efficiency 360
14.11.4 LVM Implementation and Assessment 361
14.11.5 Two Predators, One Prey (Exploration) 362

15 Continuous Nonlinear Dynamics 363
15.1 Chaotic Pendulum 363
15.1.1 Free Pendulum Oscillations 364
15.1.2 Solution as Elliptic Integrals 365
15.1.3 Implementation and Test: Free Pendulum 365
15.2 Visualization: Phase Space Orbits 366
15.2.1 Chaos in Phase Space 368
15.2.2 Assessment in Phase Space 371
15.3 Exploration: Bifurcations of Chaotic Pendulums 373
15.4 Alternate Problem: The Double Pendulum 376
15.5 Assessment: Fourier/Wavelet Analysis of Chaos 378
15.6 Exploration: Alternate Phase Space Plots 378
15.7 Further Explorations 379

16 Fractals & Statistical Growth Models 383
16.1 Fractional Dimension (Math) 383
16.2 The Sierpiński Gasket (Problem 1) 384
16.2.1 Sierpiński Implementation 385
16.2.2 Assessing Fractal Dimension 385
16.3 Growing Plants (Problem 2) 386
16.3.1 Self-Affine Connection (Theory) 386
16.3.2 Barnsley’s Fern Implementation 388
16.3.3 Self-Affinity in Trees Implementation 389
16.4 Ballistic Deposition (Problem 3) 390
16.4.1 Random Deposition Algorithm 390
16.5 Length of British Coastline (Problem 4) 391
16.5.1 Coastlines as Fractals (Model) 392
16.5.2 Box Counting Algorithm 393
16.5.3 Coastline Implementation and Exercise 393
16.6 Correlated Growth, Forests, Films (Problem 5) 395
16.6.1 Correlated Ballistic Deposition Algorithm 395
16.7 Globular Cluster (Problem 6) 396
16.7.1 Diffusion-Limited Aggregation Algorithm 397
16.7.2 Fractal Assessment of DLA or a Pollock 399
16.8 Fractals in Bifurcation Plot (Problem 7) 400
16.9 Fractals from Cellular Automata 401
16.10 Perlin Noise Adds Realism ⊙ 403
16.10.1 Ray Tracing Algorithms 404
16.11 Exercises 408

17 Thermodynamic Simulations & Feynman Path Integrals 409
17.1 Magnets via Metropolis Algorithm 409
17.2 An Ising Chain (Model) 410
17.3 Statistical Mechanics (Theory) 412
17.3.1 Analytic Solution 413
17.4 Metropolis Algorithm 413
17.4.1 Metropolis Algorithm Implementation 416
17.4.2 Equilibration, Thermodynamic Properties 416
17.4.3 Beyond Nearest Neighbors, 1-D (Exploration) 419
17.5 Magnets via Wang-Landau Sampling ⊙ 420
17.6 Wang-Landau Algorithm 423
17.6.1 Ising Model Implementation 424
17.6.2 Assessment 428
17.7 Feynman Path Integral Quantum Mechanics ⊙ 428
17.8 Feynman’s Space-Time Propagation (Theory) 429
17.8.1 Bound-State Wave Function (Theory) 431
17.8.2 Lattice Path Integration (Algorithm) 432
17.8.3 Lattice Implementation 437
17.8.4 Assessment and Exploration 440
17.9 Exploration: Quantum Bouncer’s Paths ⊙ 440

18 Molecular Dynamics Simulations 445
18.1 Molecular Dynamics (Theory) 445
18.1.1 Connection to Thermodynamic Variables 449
18.1.2 Setting Initial Velocities 449
18.1.3 Periodic Boundary Conditions & $V(r)$ Cutoff 450
18.2 Verlet and Velocity-Verlet Algorithms 451
18.3 1-D Implementation and Exercise 453
18.4 Analysis 456

19 PDE Review 461
19.1 PDE Generalities 461
19.2 Electrostatic Potentials 463
19.2.1 Laplace’s Elliptic PDE (Theory) 463
19.3 Fourier Series Solution of a PDE 464
19.3.1 Polynomial Expansion As an Algorithm 466
19.4 Finite-Difference Algorithm 467
19.4.1 Relaxation and Overrelaxation 469
19.4.2 Lattice PDE Implementation 470
19.5 Assessment via Surface Plot 471
19.6 Alternate Capacitor Problems 472
19.7 Implementation and Assessment 474
19.8 Electric Field Visualization (Exploration) 475
20 Heat Flow via Time Stepping 477
20.1 Heat Flow via Time-Stepping (Leapfrog) 477
20.2 The Parabolic Heat Equation (Theory) 478
20.2.1 Solution: Analytic Expansion 478
20.2.2 Solution: Time-Stepping 479
20.2.3 Von Neumann Stability Assessment 481
20.2.4 Heat Equation Implementation 483
20.3 Assessment and Visualization 483
20.4 Improved Heat Flow: Crank-Nicolson Method 485
20.4.1 Solution of Tridiagonal Matrix Equations 487
20.4.2 Implementation, Assessment 489

21 Wave Equations I: Strings & Membranes 491
21.1 A Vibrating String 491
21.2 The Hyperbolic Wave Equation (Theory) 491
21.2.1 Solution via Normal-Mode Expansion 493
21.2.2 Algorithm: Time-Stepping 494
21.2.3 Wave Equation Implementation 497
21.2.4 Assessment, Exploration 498
21.3 Strings with Friction (Extension) 499
21.4 Strings with Variable Tension & Density 500
21.4.1 Waves on Catenary 501
21.4.2 Derivation of Catenary Shape 501
21.4.3 Catenary & Frictional Wave Exercises 502
21.5 Vibrating Membrane (2-D Waves) 503
21.6 Analytical Solution 505
21.7 Numerical Solution for 2-D Waves 508

22 Wave Equations II: Quantum Packets & E-M 511
22.1 Quantum Wave Packets 511
22.2 Time-Dependent Schrödinger Equation (Theory) 511
22.2.1 Finite-Difference Algorithm 513
22.3 Wave Packet Implementation, Animation 514
22.4 Wave Packets in Other Wells (Exploration) 515
22.5 Algorithm for the 2-D Schrödinger Equation 516
22.6 Exploration: Bound & Diffracted 2-D Packet 518
22.7 E&M Waves via Finite-Difference Time Domain 518
22.8 Maxwell’s Equations 519
22.9 FDTD Algorithm 519
22.10 Implementation 523
22.11 Assessment 525
22.12 Extension: Circularly Polarized Waves 525
22.13 Application: Wave Plates 527
22.8 Algorithm 528
22.9 FDTD Exercise & Assessment 528

23 Electrostatics via Finite Elements 531
23.1 Finite-Element Method ⊙ 531
23.2 Electric Field from Charge Density (Problem) 532
23.3 Analytic Solution 532
23.4 Finite-Element (Not Difference) Methods, 1-D 533
23.4.1 Weak Form of PDE 533
23.4.2 Galerkin Spectral Decomposition 534
23.5 1-D FEM Implementation and Exercises 538
23.5.1 1-D Exploration 540
23.6 Extension to 2-D Finite Elements 541
23.6.1 Weak Form of PDE 542
23.6.2 Galerkin’s Spectral Decomposition 542
23.6.3 Triangular Elements 543
23.6.4 Solution as Linear Equations 545
23.6.5 Imposing Boundary Conditions 545
23.6.6 FEM 2D Implementation & Exercise 548
23.6.7 FEM 2D Exercises 548

24 Shock Waves and Solitons 549
24.1 Shocks & Solitons in Shallow Water 549
24.2 Theory: Continuity and Advection Equations 551
24.2.1 Advection Implementation 551
24.3 Theory: Shock Waves via Burgers’ Equation 552
24.3.1 Lax-Wendroff Algorithm for Burgers’ Equation 553
24.3.2 Implementation and Assessment 555
24.4 Including Dispersion 555
24.5 Shallow-Water Solitons; the KdV Equation 556
24.5.1 Analytic Soliton Solution 558
24.5.2 Algorithm for KdV Solitons 558
24.5.3 Implementation: KdV Solitons 559
24.5.4 Exploration: Solitons in Phase Space, Crossing 561
24.6 Solitons on Pendulum Chain 562
24.6.1 Including Dispersion 563
24.6.2 Continuum Limit, the SGE 565
24.6.3 Analytic SGE Solution 565
24.6.4 Numeric Solution: 2-D SGE Solitons 566
24.6.5 2-D Soliton Implementation 568
24.6.6 Visualization 568

25 Fluid Dynamics 569
25.1 River Hydrodynamics 569
25.2 Navier-Stokes Equation (Theory) 570
25.2.1 Boundary Conditions for Parallel Plates 572
25.2.2 Analytic Solution for Parallel Plates 574
25.2.3 Finite-Difference Algorithm and Overrelaxation 575
25.2.4 Successive Overrelaxation Implementation 576
25.3 2-D Flow over a Beam 577
25.4 Theory: Vorticity Form of Navier-Stokes Equation 577
25.4.1 Finite Differences and the SOR Algorithm 579
25.4.2 Boundary Conditions for a Beam 580
25.4.3 SOR on a Grid 583
25.4.4 Flow Assessment 584
25.4.5 Exploration 585

26 Integral Equations of Quantum Mechanics 587
26.1 Bound States of Nonlocal Potentials 588
26.2 Momentum-Space Schrödinger Equation (Theory) 588
26.2.1 Integral to Matrix Equations 589
26.2.2 Delta-Shell Potential (Model) 591
26.2.3 Binding Energies Solution 591
26.2.4 Wave Function (Exploration) 593
26.3 Scattering States of Nonlocal Potentials ⊙ 593
26.4 Lippmann-Schwinger Equation (Theory) 593
26.4.1 Singular Integrals (Math) 594
26.4.2 Numerical Principal Values 595
26.4.3 Reducing Integral to Matrix Equations 596
26.4.4 Solution via Inversion, Elimination 597
26.4.5 Scattering Implementation 599
26.4.6 Scattering Wave Function (Exploration) 600

A Codes, Applets & Animations 601

B Video Lecture Modules 605

Index 615