“Monte Carlo” Simulations

(the real things)

Rubin H Landau
With
Sally Haerer and Scott Clark

Computational Physics for Undergraduates
BS Degree Program: Oregon State University

“Engaging People in Cyber Infrastructure”
Support by EPICS/NSF & OSU
Prob 1: Random Walk Simulation

- Random walks in nature
 - Brownian motion (perfume)
 - electron transport
- Problem: N collisions to travel R?
- Model: walk N steps of r
 - random directions
Random Walk Theory

How far from origin after N steps?

$$R^2 = (\Delta x_1 + \cdots + \Delta x_N)^2 + (x \to y)$$ \hspace{1cm} (1)

$$= \Delta x_1^2 + \cdots + \Delta x_N^2 + 2\Delta x_1\Delta x_2 + \cdots + (x \to y)$$ \hspace{1cm} (2)

Random: all directions, average for large numbers

$$R^2 \approx \Delta x_1^2 + \cdots + \Delta x_N^2 + \Delta y_1^2 + \cdots + \Delta y_N^2$$ \hspace{1cm} (3)

$$= N \langle r^2 \rangle,$$ \hspace{1cm} (4)

$$\Rightarrow R \approx \sqrt{N} r_{\text{rms}}$$ \hspace{1cm} (5)

Each step with root-mean-square length r
Virtual Lab

- Use computer to “simulate” a random walk
- Computer = “virtual” lab
Random Walk Simulation

1. Is $R_{rms} = \sqrt{\langle R^2 \rangle} \propto \sqrt{N}$?
2. Need ensure much randomness
3. Both random Δx & Δy
4. Range $[-1, 1]$
5. Normalize each step $r = 1$:

\[\Delta x = \frac{1}{L} \Delta x', \quad \Delta y = \frac{1}{L} \Delta y', \quad (1) \]

\[L = \sqrt{\Delta x'^2 + \Delta y'^2} \quad (2) \]

6. Plot several independent
 1000-steps walks
7. Do these look random?
Random Walk Simulation (specifics)

8. Good Statistics: \(N = \# \) steps single trial, different seeds
\(K \approx \sqrt{N} \) = number trials

9. Calculate squared-distance each \(K \) trials

\[
R_k^2(N) = \left(\sum_{i=1}^{N} \Delta x_i \right)^2 + \left(\sum_{i=1}^{N} \Delta y_i \right)^2 \quad (1)
\]

Then average trials: mean squared \(R \)

\[
\langle R^2(N) \rangle = \frac{1}{K} \sum_{k=1}^{K} R_k^2(N) \quad (2)
\]

Then, root mean squared

\[
R_{rms} = \sqrt{\langle R^2(N) \rangle} \quad (3)
\]

10. Plot \(R_{rms} \) vs \(\sqrt{N} \)

11. Large \(N \) for theory OK

12. \(N \) for 2-3 place agreement?
Problem 2: Spontaneous Decay

Facts of Nature

1. Natural process (we describe)
2. Atomic & nuclear decays
3. “Spontaneous” process
 a. no external stimulate
4. Transmutation (in nucleus)
 a. $U \rightarrow Th + \alpha$
5. t when decays: random
6. Independent of:
 a. how long exist
 b. number others around

Theory:

$P(t) = \text{prob decay/t/particle}$

$= -\lambda$ \hspace{1cm} (1)

$\Rightarrow N(t), \frac{dN}{dt} \downarrow \text{with time}$
Simulation Problem

- Simulate various number decays
- Ever look exponential $N(t) \propto e^{-\lambda t}$?
- When look “stochastic”?
- Simulation or $e^{-\lambda t}$ more accurate?

Law of Nature: Number decay/t/# = $-\lambda$

\[
\frac{\Delta N(t)}{N(t)\Delta t} = -\lambda
\] \hspace{2cm} (1)

\[
\frac{\Delta N(t)}{\Delta t} = -\lambda N(t) \quad \text{def} \quad \text{activity}
\] \hspace{2cm} (2)
Method: Decay Simulation

Algorithm:
Loop through remaining nuclei
\[r_i < \lambda? \Rightarrow \text{decays (} \lambda \propto \text{rate} \uparrow \Rightarrow \text{more decay)} \]
\[t = t + \Delta t \]
Repeat loop

while \(N > 0 \)
\[\Delta N = 0 \]
for \(i = 1 \ldots N \)
\[\text{if (} r_i < \lambda \text{)} \Delta N = \Delta N + 1 \]
\[t = t + 1 \]
\[N = N - \Delta N \]
Output \(t, \Delta N, N \)
Model: Continuous Decay

If \(N \rightarrow \infty, \) & \(\Delta N \rightarrow 0, \) & \(\Delta t \rightarrow 0 \)

\[
\frac{\Delta N(t)}{\Delta t} \rightarrow \frac{dN(t)}{dt} = -\lambda N(t)
\]

(1)

Can integrate differential equation

\[
N(t) = N(0)e^{-\lambda t} = N(0)e^{-t/\tau}
\]

(2)

\[
\Rightarrow \lambda = \frac{1}{\tau}
\]

(3)

\[
\frac{dN}{dt}(t) = -\lambda N(0)e^{-\lambda t} = \frac{dN}{dt}(0)e^{-\lambda t}
\]

(4)

Exponential decay = approx to simulation

Nature: small N & stochastic