

Computational Physics An Improved Model for Physics Education

Rubin H Landau

- 1st = Computational subatomic few-body systems (1966-2003)
- 2nd = Research developments (1988-) \rightarrow broaden, education

Computational Physics for Undergraduates Degree Program Supported by NSF (CCLI, CI-Team/EPIC), OSU, MSR

© Rubin Landau, OSU

Contributing Group

- Manuel J Paez, University of Medellin, Colombia, SA, CoAuthor
 - C. E. Yaguna, J. Zuluaga, Oscar A. Restrepo, Guillermo Avendano-Franco
- Cristian Bordeianu, University of Bucharest, Romania, CoAuthor
- Paul Fink, Robyn Wangberg, CoAuthors
- Justin Elser, Chris Sullivan (system support)
- Sally Haerer, Saturo S. Kano (consultants, producers)
- Melanie Johnson (Unix Tutorials)
- Hans Kowallik (Computational Physics text, sounds, codes, LAPACK, PVM)
- Matthew Ervin Des Voigne (tutorials)
- Bertrand Laubsch (Java sound, decay simulation)
- Jon J Maestri (vizualizations, animations, quantum wave packets)
- Guenter Schneider, Al Stetz, David McIntyre (First Course)
- Juan Vanegas (OpenDX)
- Connelly Barnes (OOP, PtPlot)
- Phil Carter, Donna Hertel (MPI)
- Zlatko Dimcovic (Wavelets, Java I/O)
- Joel Wetzel (figures)
- Pat Cannan, Don Corliss, Corvallis High School (N-D Newton Raphson)
- Brian Schlatter
- Daniel Moore, (REU, Summer 98; Whitman College, WA)
- Justin Murray, (REU, Summer 98; Weber State University, Ogden, Utah
- Brandon Smith, (REU, Summer 97; Chico State/SDSC, CA)
- Paul D. Hillard, III (REU, Summer 96; Southern Univ, LA)
- Kevin Wolver, (REU, Summer 96; St Ambrose, IA)

And all the suffering students!

Preview (CP-2 Resource Letter, AJP)

- 1. CSE Courses and Programs (data) $\sqrt{}$
- 2. Need Comp Science & Engr (data) $\sqrt{}$
- 3. Comp Phys as CSE , CP Contents $\sqrt{}$
- 4. Journals
- 5. Conferences & Organizations
 - b. SC Center & Grids
 - c. CSE Ed Focus Groups \checkmark
- 6. Books √
 - ∕a. CP
 - b. Applied Math & CSE
- 7. Tools, Languages, Environments √
- 8. Parallel Computing
- 9. Digital Libraries, eTexts √
 - a. Subroutine libes
 - b. General DLs

(PUP, 2005)

© Rubin Landau, OSU

D of

SC

ubin H. Landau, Manuel José Páez & Cristian C. Bordeia

A SURVEY of COMPUTATIONAL PHYSICS

(PUP, 2008)

Changing the Status Quo?

Computational Degree Programs

Swanson (follow up), Epic, Mariasingam, L

≈ 4x(2001)

Computational Physics	Computational Mathematics
1. Houghton C	1. Arizona State
2. Illinois State	2. CUNY Brooklyn
3. Oregon State	3. Michigan State
4. SUNY Buffalo	4. Missouri So State
5. Chris Newport (BS/MS+CS)	5. Rice
Computational Science	6. Rochester Inst Tech
1. Stanford (+Math)	7. Seattle Pacific
2. SUNY Brockport	8. Saginaw Valley State
3. Stevens Inst Tech	9. San Jose State
4. UC Berkeley	10. U Chicago
Computational Biology	11. U Illinois Chicago
1. Carnegie Mellon	
2. U Pennsylvania	

<u>Foreign</u>	Programs
1. Australian National University	5. U Calgary (CSE)
2. Kanazawawa U Japan (CSE)	6. U Erlangen-Nurnberg (CSE)
3. National U Singapore (CSE)	7. U Waterloo (CSE)
4. Trinity C, Dublin (CP)	8. Utrecht U (CSE)

Texas Tech Oct 09

Other UG Computational Programs

What's in a name? That which we call a rose By any other name would smell as sweet

<u>Minor, Concentration, Track, Emphasis,</u> <u>Option, Focus (21)</u> (all politics are local)

Computational Physics	Computational Science
1. Abilene Christian	1. Capital
2. North Carolina State	2. Clark
3. Penn State Erie	3. Old Dominion
4. U Arkansas	4. RPI
Computational Mathematics	5. Salve Regina
1. Princeton (App & CM)	6. Syracuse
2. San Diego State (App & CM)	7. U Wisconsin Eau Claire
3. U Central Florida	8. U Wisconsin LaCrosse
4. U Nebraska-Lincoln	9. U Wisconsin Madison
Computational Biology	10. Wittenberg
1. UC Merced	11. Wofford C
2. Center CB (Colo)	

© Rubin Landau, OSU

Why Need Δ (Phys Ed)?

- Historical rapid Δ in how/what do science
- Premise: $\Rightarrow \Delta$ undergrad Ph Ed > *delivery (C tool)*
 - Proper for P Ed Δ content: more C, Understand C
 - CSE view; Toolset freedom, Compt Thinking (сми)
- Physics Choice: like Classic Greek, or living?
 - "we are teaching the same things we taught 50 years ago" (APS/AAPT Taskforce on Grad Ed., R Diehl)
 - PH(t) narrows e.g., CSE do FD, MD, NLinear, Combustion...
 - Simulation: Solitons, QCD, Stars, Black hole, Particle Expt
- Phys = solve problem: basic prin's + math tool; now + C
- CSE Ed view ⇔ research (creative) = Hi Q
 - = $P Ed + R \neq PER$ (inward)

Evidence for Δ (Physics Ed) 1

Texas Tech Oct 09

American institute 🏻 Physics

90

Google[™] Custom Search

* Engineering, math, and science jobs (but not teachers).

+ Software jobs.

These data reflect the percentage who chose 4 or 5 on a 5-point scale. Based on physics bachelors with no additional degrees who are not primarily students, 5 to 8 years after graduation.

AIP Statistical Research Center, 1998-99 Bachelors Plus Five Study.

Evidence for <u>∆ (Physics Ed) 3</u>

- National Science Board: remain in field
 - 35% of CS, math BS (74% PhD)
 - 22% of physical, biological (52%)
- \Rightarrow UG P overemphasize P = weaker prep
- Number of STEM BS ("nerds")
 - 35% (1966) ↓ 31% (2000) [46% China]
 - 57% Physics PhD (2006) non-US citizen
 - Yet number ≠ issue! Death of Distance Rubin Landau, CPUG

NYT 14Nov07

Words of the Wise Men/Women

- President's Info Tech Advisory Comm
 - CS depts can't meet need, not diverse,
 - "computational science indispensable in every sector,... need be recognized by govts & universities" (recent)
- B Labor (2009): decade IT shortage
- Gathering Storm Report, 2005
 (Steve Chu, Bob Richardson: Nobles, Sec E, VPR CU)
 - Serious, intensifying challenge competiveness & Stnd of Living
 - On losing path
 - US entitled to better Q of life

Google[™] Custom Search _____ go

Where Do Physics BS's Go?

Texas Tech Oct 09

Source: U.S. Department of Education

Employment in STEM ↑ 3 X wrt others

(CS 5X)

Table 2

Employment growth and job openings in STEM occupations, projected 2004-14

	Employment		2004-14 change		Job openings due
Occupational group	2004	2014	Numeric	Percent	to growth and net replacement, 2004-14
Science occupations, natural*	806,330	931,027	124,697	15%	315,000
Life scientists	231,723	279,890	48,166	21	103,000
Physical scientists	250,417	280,913	30,496	(12)	94,000
Natural science technicians	324,190	370,224	46,034	14	118,000
Technology occupations (computer specialists)	3,045,836	4,002,547	956,711	31	1,350,000
Engineering occupations	2,299,778	2,576,906	277,128	12	798,000
Engineers	1,448,871	1,643,500	194,629	13	507,000
Drafters, engineering, and mapping technicians	850,906	933,406	82,500	10	291,000
Mathematical science occupations	106,965	117,297	10,332	10	39,000
STEM occupations, total	6,258,909	7,627,777	1,368,867	22	2,503,000

* This group may include a small number of social science technicians, who are counted among life, physical, and social science technicians, all other.

DEN LESSER

Evidence for Δ (Science Ed) 4

The Ne	w York Eimes		I	Educatio	on	
WORLD	U.S. N.Y. / REGION	1 BUSINESS 7	FECHNOLOGY S	CIENCE HEALTH	I SPORTS OPIN	ION ARTS STYLE TRAVE~ balance
POLITICS	S WASHINGTON ED	UCATION				
	****	Cli	ck here an	d be expo	sed to the	world.
Colle	eges in 3 Sta	ates to Se	et Basics fo	or De <mark>gr</mark> ees	3	Next Article in Education
By TAMAR Published:	R LEVMN April 8, 2009				SIGN IN TO E-MAIL	
	irst Amorican offe	rt of its kind,	universities and	colleges in		Thursday.
In the f	iist American eno			to make gune	GA SHARE	
In the f	a, Minnesota and I	Utah are start	ing pilot project:	s to make sure	All OTRALE	See Sample Priv
In the f Indiana that deg	a, Minnesota and I gree programs in t	Utah are start heir states ref.	ing pilot project: lect a consensus	about what	ARTICLE TODLS	See Sample Priv
In the f Indiana that deg specific	a, Minnesota and U gree programs in t knowledge and sk	Utah are start heir states ref tills should be	ing pilot project: lect a consensus taught.	about what	ARTICLE TODLS SPONSORED BY	See Sample Priv
In the f Indiana that deg specific 0-	a, Minnesota and U gree programs in t knowledge and sk	Utah are start heir states ref tills should be CSE	ing pilot project: lect a consensus taught. CP	about what	ARTICLE TOOLS SPONSORED BY	See Sample Priv
In the f Indiana that deg specific 0-	An Minnesota and U gree programs in t knowledge and sk CS 31	Utah are start heir states ref tills should be CSE 29	ing pilot projects lect a consensus taught. CP 32	PH 36	ARTICLE TOOLS SPONSORED BY	See Sample Priv
In the f Indiana that deg specific 0 her plication	An Minnesota and U gree programs in t knowledge and sk CS 31 17	Utah are start heir states ref tills should be CSE 29 28	ing pilot projects lect a consensus taught. CP 32 28	PH 36 45	ARTICLE TOOLS SPONSORED BY	See Sample Priv
In the f Indiana that deg specific 0- her plication	And American end a, Minnesota and U gree programs in t knowledge and sk CS 31 17 12	Utah are start heir states ref tills should be CSE 29 28 23	ing pilot projects lect a consensus taught. CP 32 28 19	PH 36 45 17	ARTICLE TODLS SPDNSORED BY	See Sample Priv

- Compiled language
 - see algorithm (eqtns)
 - bare bone codes given
 - "I am not a bigot!" (packages)

© Rubin Landau, CPUG

Intellectual Content of CSE Ed Student Learning Outcomes (SLO)

- Elements of Computational Science & Engineering Ed Yasar & Landau, SIAM Review, 45, 4, 787-805 (2003)
- Prerequisite establish CX courses, program
- Easy (too) expect 1 course teach entire subject
- Historically guided by research needs; grad study
- See SLOs for specifics

Don't have to buy entire curriculum (AAPT, CISE, MS, OH, UC, CSU, CCLI)

Visualizations, 2 Slit Diffraction

Texas Tech Oct 09

Fractal Growth

Jackson Pollock

(Richard Taylor, UofO, NYT)

Catenary Wave + Friction

UNIVERSIDAI DE ANTIOQUE

TERRIT	Fall	Winter	Spring
All and a second	Diff Calculus (Mth)	Scientific Comptng I	Intro CS I (CS)
Fresh	Writing/fitness	(PH/MTH/CS)	Vector Calc (MTH)
(46)	Gen Chem I	Intgl Calculus (MTH)	Gen Phys I
NE LEAR	Perspective	Perspective - 2	Writing/fitness
THE CONTRACTOR	CP Seminar	Gen Chem II	U. TOR DAY
	Intro CS II (CS)	Discrete Math (MTH)	Scientific Comptg II (PH)
Soph	Vector Calc II (MTH)	Infinite Series (MTH)	App Diff Eqs (MTH)
(45)	Gen Phys II	Gen Phys III	Intro Mod Phys
	Writing II	Perspective	Linear Algebra (MTH)
	<u>CPI (PH)</u>	CP II (PH)	Class Mech (PH)
Jr	Symmetries (PH)	Data Structures (CS)	Quantm Mech (PH)
(44)	Oscillations (PH)	1D Waves (PH)	Perspective
	Vector Fields (PH)	Quantum Measures (PH)	Statistics (MTH)
	Writing III	Central Forces (PH)	Biology
	CP Seminar	Elective	
	E & M	Adv CP Lab (PH)	Adv CP Lab - Thesis
Sr	Math Methods	Social-Ethical CS	CP Seminar
(45)	Num Lin Alg (MTH)	Elective - 2	Elective –2
	Electives - 2	Synthesis	Multi Media, Web (CS)

BS IN BP @ D

Real computation across the curriculum Not 1 course, not just our view Use what's available

Texas Tech Oct 09

Digital Books & Online Courses

Google -

Stopped

00:27:30 Exercises

- Web N is here to stay & grow; challe
- Not: general ed, weak discipline, mo
- Natural (best) for computing educati
- Digital book (MathML)
 - Now hot topic (slates)
 - Live/search eqns, figs
 - Compadre
 - Nat Science Digital Libe
 - RHL: package lectures
 - Sally Haerer

CS: multiple multiple-layers abstraction; scaling

math)

• Δ Ed: PH + CS + Math in problem solving *context* (cut CS,

Take Home Lessons

- Computing essential most forefront research
- Exciting research + significant computation
- Multiscale & Multiphysics; broader view of physics
- CyberInfra world: big science in small distant places
- Rejuvenate Physics Ed + Modern Research & Tools
- Ph + CS + Math in problem/research context
 - Learn all 3 better, frees time for C, App Math
- Teach C: do it right; \Rightarrow right PH, right questions

Two Lower-Division Courses

Physics/Math/CS 265, Scientic Computing I (A First Course, Princeton)

OS, Basic Maple, Number Types Logical Maple Functions, Number types, Symbolics Visualiz Calculus, Equation Solving Objects Introductory Java Web Co Limits, Methods (functions) Arrays,

Logical control, plotting Visualization, Loops, Integration Objects, Complex Arithmetic Web Computing: Applets Arrays, File I/O

Physics 464/564, Intro Computational Science (Computational Physics, Wiley)

Unix Editing and Running*	Monte Carlo Techniques
Floating Point Errors & Uncertainties	Random Walk, Decay Simulation*
Limits: precision, under/overo ws	Interpolation, cubic spline
Matrix Computing with JAMA libe	Least-squares t, Quadrature
Differentiation, ODEs, ODE Eigenvalues	Hardware: Memory, CPU, Tuning

Contents of Upper-Division Courses

Physics 465–6/565–6 Computational Physics (Computational Physics, Wiley)

Realistic, Double Pendula*	Quantum Path Integration*
Fourier & Wavelet Analyses	Fluid Dynamics
Predators & Prey: Nonlinear Mappings*	Electrostatic Potentials
Chaotic Pendulum/Scattering*	Parallel Computing (MPI), Heat Flow
Fractals, Aggregation, Trees, Coastlines*	Waves on a String
Bound States via Integral Eqtns	Shock Waves & Solitons
Quantum Scattering, Integral Equations	Molecular Dynamics Simulations
Thermodynamics: The Ising Model	Electronic Wave Packets

Physics 467/567 Advanced Computational Laboratory

Radar Maps of Archaeological Tells		
Molecular Dynamics Simulations		
Meson-Nuclei p-Space Scattering		
Wavepacket-Wavepacket Interactions		
Serious Scientic Visualization		
Earthquake Analysis		

Density Functional Theory
Gamow States of Exotic Atoms
Pion Form Factor Data Analysis
Particle Hydrodynamics
Brain Waves Principal Components
Quantum Chromodyanmaics

Texas Tech Oct 09