Universal Serial Bus

Test and Measurement Class,
Subclass USB488 Specification
(USBTMC-USB488)

Revision 1.0

April 14, 2003

USBTMC USB488 Subclass Specification Revision 1.0

Revision History

Rev Date Filename Comments

1.0 April 14, 2003 USB488 1 00.doc | Copyright notice added.

1.0 December 22, 2002 USB488 1 _00.doc | 1.0 specification adopted

0.9 September 17, 2002 | USB488 0 9rc1.doc | Specification moved to 0.9

0.8 April 30, 2002 USB488 0 8a.doc | Specification moved to 0.8

0.7 June 26, 2001 USB488 0 70.doc | Specification effort started in DWG

Send comments via electronic mail to the DWG chair (pberg@mcci.com).

© Copyright 2003, USB Implementers Forum, Inc.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

ii April 14, 2003

Revision 1.0

Contributors

Andy Purcell
Kathy Hertzog
Steve Schink
Jerry Mercola
Colin White
Makoto Kondo
Andrew Thomson
Dan Mondrik
Eric Singer
Geert Knapen
Arnd Diestelhorst
David Fink

Doug Reynolds

April 14, 2003

Agilent Technologies
Agilent Technologies
Agilent Technologies
ICS Electronics

IFR

Kikusui

National Instruments
National Instruments
National Instruments
Philips

Rohde & Schwarz
Tektronix

Tektronix

USBTMC USB488 Subclass Specification

iii

USBTMC USB488 Subclass Specification Revision 1.0

Table of Contents

1 INTRODUCTIONoooiiiiiicererrassreresssseesessssrerssssss e e essssseeeasssneeeasssmsenasssnnesesssnnesssssnnenssssameesssnnenssssnnnns 1
1.1 Purpose 1
1.2 Scope 1
1.3 Related Documents 1
14 Terms and Abbreviations 2
B © 1V 4 Y | 3
3 INTERFACE ENDPOINTS AND CHARACTERISTICS.........cooi i iisssmsmrs s s s s s ssssssmsssn s s s s sssssssmnnns 4
3.1 Default control endpoint 4
3.2 Bulk-OUT 4
3.2.1 USB488 defined Bulk-OUT cOMMANA MESSAZESeeveeuieueenieieieiesieeeeeteeieeiieeetesiestesiesaeeteeneeneeseeneeneees 4
3.2.1.1 MSEID = TRIGGER ..ottt sttt a e bttt et e be et eb e e st eneeneenean 4
322 USB488 Bulk-OUT USBTMC device dependent command message example...........cceevverrierveevenreennenns 5
323 Maintaining USB488 Bulk-OUT USBTMC message synchronization..............cceeeveeeveevesvenreesreessesnennnns 6
3.3 Bulk-IN 6
33.1 USB488 BUIK-IN €XAMPIE.......cccuirieiiieiiieiieiieeieeteete sttt et eaesttestee e eseessesaesseesseesseenseensesssenssesssesseensens 7
3.3.1.1 Host sends a MsgID = REQUEST DEV_DEP_MSG_IN command messagecceeevereeerreeruernnenne 7
3.3.1.2 Host reads the Bulk-IN USBTMOC MESSAZEeevveveererierierieriienieeeeeresseesseesseesesssesssesseessesssesssesssenses 7
332 Maintaining USB488 Bulk-IN USBTMC message synchronization............ccccceeeereeeeeeeesienieeneeeneeseennes 8
34 Interrupt-IN 9
34.1 Interrupt-IN DATA sent due to an SRQ CONAItIONeovuiiiiiiiiiiiiiiieie e 9
342 Interrupt-IN DATA sent due to READ _STATUS BYTE request......ccceecueiienienieniiienie e 9

4 CONTROL ENDPOINT REQUESTS.........coi i iirssmn s ssssmmn s s s smmmns s s mmmnn s e e nan 10
4.1 Standard Requests 10
4.2 USBTMC class specific requests 10
4.2.1 INITIATE CLEAR ...ttt ettt st h e bt et ettt b et e bt bt ebe et ennenaens 10
4222 GET _CAPABILITIES ...ttt ettt ettt h ettt e e bbbt et eneeneens 10
4.3 USBA488 subclass specific requests 11
4.3.1 READ STATUS BYTE ...ttt ettt sttt sttt ettt eeeees 12
4.3.1.1 Response format for USB488 interfaces without an Interrupt-IN endpoint............cccveeveriereeriennennen. 13
4.3.1.2 Response format for USB488 interfaces with an Interrupt-IN endpoint............ceceeeveienienienenennee. 13
4.3.1.3 Status Byte MAV Dit...c..ooiieieiieeee ettt ettt st e ettt et e et eneeenaenneas 13
432 REN_CONTROL ...ttt ettt a e ea st e e e b et e e bt eaeeseeneens e s eabeebeebeebeeneeneeeeneas 13
433 GO _TO LOCAL ...ttt ettt ettt et ht st e s et et e e bt eb e e bt eaeeneems et e ebeeeeabeseeeneeneanseneens 15
434 LOCAL LOCKOUT ...ttt ettt sttt ettt ettt et bt e st e st et et e sesaeebeeseeseeneansenseaseasesneeneensansan 16

iv April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

LT 0 =T 0 | 10] 17
51 Standard Descriptors 17
5.1.1 INEEITACE AESCIIPLOT ...evieiieiieie ettt ettt et e et estae st e seesseenseente st e enseenseensessseaseenseenseenseensennns 17
5.1.2 USB488 Interrupt-IN endpoint deSCIIPLOTevieieriieiieiieie ettt ee et et eeesbeseaesraesseesseeseeneeenes 17
5.13 SEING DESCIIPLOTS «..evvieeieiieiieiieteeteeteetesttetteteesteeseesseeseesseesseassesssesseesseenseanseensesseesseanseenseessesssessaensens 18
6 MESSAGE EXCHANGE PROTOCOL FOR USB........cccoimiiininiinnsn s ssss s snsnns 19
6.1 MEP error processing and USB — clearing the Output Queue 19
APPENDIX 1: IEEE 488.1 COMPATIBILITY (INFORMATIVE).......cccstmnmmmminnininesnes s s sneas 20
IEEE 488.1 bus messages 20
UnNilNe COMMANGS ...ttt 20
Universal multiling commandsocooiiiiiiiiiiiii 20
Addressed COMMEANGS ..o s 21
SECONAATY COMIMANGSveevvieiiieeieitiestieteeteete st e st et ebeesteetteeteesseesseessesssesssesseesseesseesseassesssasensseessesssesaessesssesssenses 21
Serial Polling 21
Parallel Polling 21
Interface Function Capabilities 22
APPENDIX 2: IEEE 488.2 COMPATIBILITYcooiiiiimiriniiiesnssnss s sss s s ssssssss sasssneas 23
Mandatory IEEE 488.2 common commands and queries 23
Optional IEEE 488.2 common commands and queries 23
Figures
Figure 1 -- USB488 communication MOdel OVEIVIEWccovrieueieiciiiiiiinirinnreeeeeieeeeeenese st eees 3
Figure 2 -- RL state diagram fOr USBcccccciiirrriiieeiiiiir et 14
Tables
Table 1 -- USB488 defined MSZID VAIUEScccveueueuiiiiiiiiiririeieieeteeiirte et es 4
Table 2 -- TRIGGER Bulk-OUT Header with command specific contentcccccceeeeirnnnneeccccncneneenes 5
Table 3 -- Example “*IDN?” Bulk-OUT USBTMC device dependent command message.............ccccccccveveuce. 6
Table 4 -- REQUEST_DEV_DEP_MSG_IN €XamPIE.......cccerrirurrerererereriiiirinerinenieseieieseseseeeesesesesesesseseseseseaseesesees 7
Table 5 -- Bulk-IN example, 488.2 compliant response USBTMC MeSSaEc.ccueurerrirerererueuererererereerneneens 8
Table 6 -- USB488 Interrupt-IN packet sent due to an SRQ conditioncccccceceiioininnnnniccccccceene 9
Table 7 -- USB488 Interrupt-IN packet sent due to READ_STATUS_BYTE request..........ccccccoeueucuiuiiinincncnnne. 9
Table 8 -- GET_CAPABILITIES reSPONSe PACKEL......cccueueirieiiirieiiirieieirreetrteietsreneesaeseeesne et 10
Table 9 -- USB488 defined DREQUESE VALUESccoveveveveuiiiiiiiiiiireececcicic ettt 12
Table 10 -- USB488 defined USBTIMC _StatUts VALUESveeeeeeeeeeeeeeeeeeeeeeeeeee et e et eeeeveeseeaeeseeeeeseeeeeesesenees 12
Table 11 -- READ_STATUS_BYTE Setup Packet...........ccccceiiiiiriniireieiciccicccecerereeeeeee e 12
Table 12 -- READ_STATUS_BYTE control endpoint response format (no Interrupt-IN endpoint).............. 13
Table 13 -- READ_STATUS_BYTE control endpoint response format (Interrupt-IN endpoint present).....13
Table 14 -- LOCAL REMOTE state machine terminologycccocoveueueueueueuiiinirrneneneeieieeeseeeseseseseeeeeenenes 14

April 14, 2003 v

USBTMC USB488 Subclass Specification Revision 1.0

Table 15 -- REN_CONTROL Setup Packet.........cccccireuiinieiiirieiiiiicinieieeneeretreeieeeeneeeereseseeseneeese e eeneseeenene 15
Table 16 -- REN_CONTROL reSpOnse fOrMaAtc.c.ceeueueirirrriririeiererererereaeetesereneseseseeseseseseseaescstesssssesessssesenes 15
Table 17 -- GO_TO_LOCAL Setup PaCKeL.......ccuririririrericieiciciciiiiitirerereseiete ettt sese e sesesaeaenenes 15
Table 18 -- GO_TO_LOCAL 1esponse fOrmMaLt............ccccueueuiuiiiniiriririeieieieieeieieeee e eeseseseeaenenes 16
Table 19 -- LOCAL_LOCKOUT Setup Packetc.cccoueuiinieiiiririiiiecirieicineeteeieeeeenee e eeseseeenene 16
Table 20 -- LOCAL_LOCKOUT reSponse fOrmat..........cccvueueireueinieeininieinererireeneseeereseeesesesesseseesseseessenesenens 16
Table 21 -- USB488 interface deSCIIPLOTottt sttt ettt sesasaenene 17
Table 22 -- Interrupt-IN endpoint deSCIiPtOTcouvueueieieiiiiiiiiirrreee et 18
Table 23 - USB MEP IESSAZEScveveveueueueiiiiiiiiiiririreeeeteieie ettt et seseeaenene 19
Table 24 -- IEEE 488.1 compatibility - uniline commands............cccccocoeiiiiiiininniccccccnee 20
Table 25 -- IEEE 488.1 compatibility - universal multiline commands.............ccccoeoiicinnnniicinnniccenen, 21
Table 26 -- IEEE 488.1 compatibility - addressed commandscccceeucueiiinnnnnnececceeceirreseeeienes 21
Table 27 -- IEEE 488.1 Interface FUNCLIONS...........ccoviiiiieiiiiiiiiiiiereeee e 22
Table 28 -- Mandatory IEEE 488.2 commands and queries that map to USB488..............ccccccooiiiiinnnnnnes 23
Table 29 -- Mandatory IEEE 488.2 commands and queries that do not map to USB488................ccccccceeuneee 23
Table 30 -- Optional IEEE 488.2 common commands and queries that map to USB488..........cccccovvvvuruennes 24
Table 31 -- Optional IEEE 488.2 common commands and queries that do not map to USB48§ 24

vi April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

1 Introduction

1.1 Purpose

This subclass document describes requirements for devices with a USB test and measurement class
(USBTMC) interface that communicates over USB using USBTMC messages based on the IEEE 488.1 and
IEEE 488.2 standards.

This specification assumes familiarity with the USB 2.0 Specification and the USBTMC specification.

1.2 Scope

This document specifies the shared attributes, common services, and data formats for devices with a
USBTMC USB488 subclass compliant test and measurement interface. Protocol and interoperability
requirements are set so that host software can manage multiple implementations based on this USBTMC
USB488 Subclass specification.

The definition of Host API's for communication with USB488 interfaces is outside the scope of this
specification. USB488 API’s and any other specifications needed to achieve USB488 interoperability will
be documented in a future VISA specification.

1.3 Related Documents

o Universal Serial Bus Specification, Revision 2.0, April 27, 2000, http:/ /www.usb.org

e ANSI X3.4-1986, American National Standard Code for Information Interchange Coded Character Set -
7-bit, http:/ /www.ansi.org

e USB Test and Measurement Class (USBTMC) specification, Revision 1.0, http:/ /www.usb.org

e VISA Specification, http:/ /www.vxipnp.org

o IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation,
http:/ /www .ieee.org

e IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common Commands,
http:/ /www.ieee.org

¢ Standard Commands for Programmable Instruments Manual, http:/ /www.scpiconsortium.org

April 14, 2003 1

USBTMC USB488 Subclass Specification Revision 1.0

1.4 Terms and Abbreviations

Term

488.2 USB488 interface

ATN=FALSE message
EOM

GPIB

IRP

MEP

USB488 interface

VISA

Description

A USB488 interface that supports IEEE 488.2 data formats, syntax, mandatory
IEEE 488.2 common commands and queries that map to USB (See Table 28)
and may support IEEE 488.2 optional commands and queries that map to USB
(See Table 30). In addition, a 488.2 USB488 interface must support the Message
Exchange Protocol (MEP). A 488.2 USB488 interface must have exactly one
Interrupt-IN endpoint. A USB488 interface indicates it is a 488.2 USB488
interface with a bit in the USB488 extensions to the GET_CAPABILITIES
response packet.

A GPIB message that is sent with the ATN signal line not-asserted.
End Of (USBTMC) Message

General Purpose Interface Bus. The IEEE 488.1 and IEEE 488.2 standards
specify GPIB.

I/ O Request Packet. From the USB 2.0 specification: “ An identifiable request
by a software client to move data between itself (on the host) and an endpoint
of a device in an appropriate direction.”

Message Exchange Protocol. See IEEE 488.2, section 6.
A USBTMC interface that further conforms to this subclass specification.

Virtual Instrument Software Architecture

April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

2 Overview

The USB488 communication model is shown below in Figure 1.

l\-——————- device
Cortrol endgpoint (recguired)

N

Bulk-oUT endpoint (required)

I=B4as

Bulk-IM endpaint (required) irterface

Huost

Interrupt-IN endpoint (required for 488 .2 USB488)

VN

Figure 1 -- USB488 communication model overview

The control endpoint is required and is used for the required standard USB requests, USBTMC specific
requests, and USB488 specific requests.

The Bulk-OUT endpoint is required and is used for sending GPIB ATN=FALSE program messages to a
device with a USB488 interface. Example: “*IDN?”. The Bulk-OUT endpoint is also used for sending a
trigger command message (see 3.2.1.1), since a trigger must be executed synchronously with other Bulk-
OUT messages.

The Bulk-IN endpoint is required and is used for receiving GPIB ATN=FALSE response messages from a
device with a USB488 interface. Example: the identification string returned after receiving “*IDN?”, such
as “XYZCO,246B,5000-0123-02,0”.

The Interrupt-IN endpoint is required for 488.2 USB488 interfaces and for any USB488 interface that
reports SR1 capability in the GET_CAPABILITIES response (See section 4.2.2). Otherwise, the Interrupt-
IN endpoint is optional. If present, the Interrupt-IN endpoint must be used to communicate the IEEE 488
defined Status Byte. See section 3.4. The SRQ condition is communicated implicitly whenever a Status
Byte is received with RQS = 1.

April 14, 2003 3

USBTMC USB488 Subclass Specification Revision 1.0

3 Interface Endpoints and Characteristics

3.1 Default control endpoint

The default control endpoint must support control transfers as defined in the USB 2.0 specification. The
default control endpoint is used to send standard, class, and vendor-specific requests to the device,
interface, or endpoint. The default control endpoint number must be 0x00.

3.2 Bulk-OUT

The Host uses the Bulk-OUT endpoint to send USBTMC command messages to the device. USBTMC
device dependent command messages are similar to GPIB ATN=FALSE program messages.

See the USBTMC specification for rules regarding the Bulk-OUT endpoint. In addition, this USB488

subclass specification adds the following rule:

e The Host must not send a new command message with MsgID = DEV_DEP_MSG_OUT or TRIGGER if
there is a Bulk-IN transfer that has not yet completed. This rule is consistent with rules from the IEEE
488.2 Message Exchange Protocol (MEP) and enforces the traditional “half-duplex” communication
model for IEEE 488 test and measurement devices. If the device parses a USBTMC command message
with MsgID = DEV_DEP_MSG_OUT or TRIGGER received on a 488.2 USB488 interface while a Bulk-
IN transfer is in progress, the device must perform the IEEE 488.2 defined UNTERMINATED action.
See IEEE 488.2 section 6 and this specification, section 6.1.

IEEE 488.2 specifies that a newline character, 0x0A, is one method to send a <PROGRAM MESSAGE
TERMINATOR>. For USB488 communications, the Host may provide a newline character message
terminator as the last USBTMC device dependent command message data byte but is not required to do
s0. Note that the USBTMC specification requires the Host to indicate the end of a USBTMC message by
setting the EOM bit in the Bulk-OUT Header.

3.2.1 USBA488 defined Bulk-OUT command messages

The USBTMC specification reserves a range of MsgID values for USBTMC subclasses to define. Table 1
below shows the MsglID definitions for the USB488 subclass.

Table 1 -- USB488 defined MsgID values

MsgID | Direction MACRO Description
OUT=Host-to-device
IN=Device-to-Host

128 OouT TRIGGER The TRIGGER command message provides a
mechanism for the Host to trigger device dependent
actions on a device synchronously with other Bulk-OUT
messages. Support for this MsgID is optional. See 4.2.2.

IN (no defined response) | There is no defined response for this command.

129-191 | Reserved Reserved Reserved for USBTMC subclass use.

3.2.1.1 MsgID = TRIGGER

The Host uses MsgID = TRIGGER to identify a transfer that causes a device to trigger and execute device
dependent actions synchronously with other Bulk-OUT messages. The device performs actions of an
IEEE 488 GET.

The Bulk-OUT Header command specific content for this command is shown below in Table 2.

4 April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

The Host must not send the TRIGGER request until all Bulk-OUT IRPs to the USB488 interface have
completed. The Host must serialize the TRIGGER request with Bulk-OUT and Bulk-IN transfers in order
to meet the requirements of IEEE 488.2, section 6.1.4.2.5.

Table 2 -- TRIGGER Bulk-OUT Header with command specific content

Offset | Field Size | Value Description

0 MsgID 1 TRIGGER See Table 1.

1-3 See the USBTMC 3 See the USBTMC See the USBTMC

specification, Table 1. specification, Table 1. specification, Table 1.

USBTMC 4-11 Reserved 8 All bytes must be 0x00. Reserved. All bytes must be
command 0x00.
specific
content

A device with a USB488 interface must be ready to receive a TRIGGER request at any time.

If GET_CAPABILITES USB488InterfaceCapabilities.DO = 1, the TRIGGER request (See Table 8), must be
forwarded to the Function Layer. To guarantee proper sequencing, all previously received Bulk-OUT
USBTMC message content must be forwarded to the Function Layer before the TRIGGER request can be
forwarded.

If GET_CAPABILITES USB488InterfaceCapabilities.DO = 0, the device must remove the Bulk-OUT
Header from the Bulk-OUT FIFO and Halt the Bulk-OUT endpoint.

3.2.2 USB488 Bulk-OUT USBTMC device dependent command message example

An example of a USBTMC device dependent command message, “*IDN?\n”, is shown below in Table 3.

April 14, 2003 5

USBTMC USB488 Subclass Specification Revision 1.0

Table 3 -- Example “*IDN?” Bulk-OUT USBTMC device dependent command message

Offset | Field Size | Value Description
0 MsgID 1 DEV_DEP_MSG_OUT
1 bTag 1 0x01 (varies with each
transfer) See the USBTMC specification,
2 bTaglnverse 1 OxFE Table 1.
3 Reserved 1 0x00
4 TransferSize 4 0x06
Bulk-OUT 5 0x00
Header [7¢ 0x00
7 0x00 Command specific content.
8 bmTransfer 1 0x01 (EOM is set). See the USBTMC specification,
Attributes Table 3.
9 Reserved 1 0x00
10 Reserved 1 0x00
11 Reserved 1 0x00
12 Device dependent 1 0x2A =" USBTMC message data byte 0.
USBTMC —
. 13 message data bytes 1 0x49 =1 USBTMC message data byte 1.
de(:;e\r?(flint 14 1 Ox44 ='D’ USBTMC message data byte 2.
4 L15 1 0x4E ="N’ USBTMC message data byte 3.
comman —
message 16 1 0x3F ="? . USBTMC message data byte 4.
17 1 0x0A ="\n" =newline | USBTMC message data byte 5.
18-19 | Alignment bytes 2 0x0000 Two alignment bytes are added
(required to make the (not required to be to bring the number of DATA
number of bytes in the 0x0000) bytes in the transaction to 20,
transaction a multiple of which is divisible by 4.
4)

3.2.3 Maintaining USB488 Bulk-OUT USBTMC message synchronization
See the USBTMC specification, section 3.2.2.

3.3 Bulk-IN

The Host uses the Bulk-IN endpoint to read USBTMC response messages from the device. The Host must
first send a USBTMC command message that expects a response before attempting to read a USBTMC
response message.

If the Host sends a USBTMC MsgID = REQUEST_DEV_DEP_MSG_IN, the device may then send a
MsgID = DEV_DEP_MSG_IN response message on the Bulk-IN endpoint. USBTMC response messages
with MsgID = DEV_DEP_MSG_IN (See USBTMC specification section 3.3.1.1) are similar to GPIB
ATN=FALSE response messages.

See the USBTMC specification for rules regarding the Bulk-IN endpoint.

IEEE 488.2 specifies that a newline character, 0x0A, must be sent as a <RESPONSE MESSAGE
TERMINATOR>. Therefore, a device with a 488.2 USB488 interface must transfer a newline character as
the last byte in a USBTMC device dependent message. As stated in the USBTMC specification, the device
must indicate the end of the USBTMC message by setting the EOM bit in the Bulk-IN Header.

6 April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

3.3.1 USB488 Bulk-IN example

Sections 3.3.1.1and 3.3.1.2 below show an example sequence for reading a USBTMC response message
from a device. The example shows the Host first sending a MsgID = REQUEST_DEV_DEP_MSG_IN
command message and the device then returning a response to the “*IDN?\n” query shown in Table 3.

3.3.1.1 Host sends a MsgID = REQUEST_DEV_DEP_MSG_IN command message

The Host first sends a MsglD = REQUEST_DEV_DEP_MSG_IN command message. This is shown below
in Table 4. In this example the application buffer size is 100 (0x64) bytes.

Table 4 -- REQUEST_DEV_DEP_MSG_IN example

Offset | Field Size | Value Description
0 MsgID 1 REQUEST_DEV_DEP_MSG_IN
1 bTag 1 0x02 (varies with each transfer) See the USBTMC
2 bTaglnverse 1 0xFD specification, Table 1.
3 Reserved 1 0x00

Bulk- 4 TransferSize 4 0x64

OuUT 5 0x00

Header | 6 0x00 Command specific

7 0x00 content.
8 bmTransferAttributes | 1 0x00 See the USBTMC
9 TermChar 1 0x00 specification, Table 4.
10 Reserved 1 0x00
11 Reserved 1 0x00

3.3.1.2 Host reads the Bulk-IN USBTMC message

After sending the MsgID = REQUEST_DEV_DEP_MSG_IN command message shown in Table 4, the
Host sends a Bulk-IN request. In this example, the USB488 device sends the USBTMC response message
“XYZCO,246B,5-0123-02,0\n”, shown below in Table 5. Note that the actual response semantics for a
“*IDN?\n” response are specified in IEEE 488.2, section 10.14.3.

April 14, 2003 7

USBTMC USB488 Subclass Specification

Revision 1.0

Table 5 -- Bulk-IN example, 488.2 compliant response USBTMC message

Offset | Field Size | Value Description
0 MsgID 1 DEV_DEP_MSG_IN
1 bTag 1 0x02 (matches bTag in
REQUEST_DEV_DEP_ See the USBTMC specification, Table
MSG_IN) 8.
2 bTaglnverse 1 0xFD
3 Reserved 1 0x00
Bulk-IN 451 TransferSize 4 (0);1)(7)
Header
6 0x00 USBTMC response specific content.
7 0x00
8 bmTransfer 1 0x01 (EOM=1) See the USBTMC specification, Table
Attributes 9.
9 Reserved 1 0x00
10 Reserved 1 0x00
11 Reserved 1 0x00
12 Device dependent | 1 0x58 ="X’ USBTMC message data byte 0.
13 1 0x59 ="Y’ USBTMC message data byte 1.
14 1 0x5A =7’ USBTMC message data byte 2.
15 1 0x43="C"’ USBTMC message data byte 3.
16 1 0x4F ='0O’ USBTMC message data byte 4.
17 1 0x2C =", USBTMC message data byte 5.
18 1 0x32="2 USBTMC message data byte 6.
19 1 0x34 ="4 USBTMC message data byte 7.
20 1 0x36="6 USBTMC message data byte 8.
21 1 0x42 ="B’ USBTMC message data byte 9.
Udsggilg/ic 22 1 0x2C ="/ USBTMC message data byte 10.
dependent 23 1 0x53 =S USBTMC message data byte 11.
message 24 1 0x2D ="~ USBTMC message data byte 12.
25 1 0x30 =0’ USBTMC message data byte 13.
26 1 0x31="1 USBTMC message data byte 14.
27 1 0x32="2 USBTMC message data byte 15.
28 1 0x33 =3’ USBTMC message data byte 16.
29 1 0x2D ="~ USBTMC message data byte 17.
30 1 0x30="0 USBTMC message data byte 18.
31 1 0x32="2 USBTMC message data byte 19.
32 1 0x2C =", USBTMC message data byte 20.
33 1 0x30 ="0 USBTMC message data byte 21.
34 1 0x0A ="\n" = newline USBTMC message data byte 22.
35 Alignment byte 1 0x00 (not required to be | Alignment byte.

0x00)

One alignment byte is shown as an example of a transfer from a device that does 16-bit wide DMA to the
Bulk-IN FIFO. The alignment byte brings the total number of bytes to 12 + 23 + 1 = 36, which is a multiple
of 2 bytes. As stated in the USBTMC specification, a device is not required to send any alignment bytes.

3.3.2 Maintaining USB488 Bulk-IN USBTMC message synchronization
See the USBTMC specification, section 3.3.2.

April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

3.4 Interrupt-IN

488.2 USB488 interfaces must include an Interrupt-IN endpoint. In addition, any USB488 interface with
service request capability (IEEE 488.1 SR1) must have an Interrupt-IN endpoint.

The Host, after receiving an Interrupt-IN notification, must consider the interrupt transfer complete. The
Host must interpret the next Interrupt-IN DATA as a new notification, beginning with bNotify1.

3.4.1 Interrupt-IN DATA sent due to an SRQ condition

If GET_CAPABILITIES USB488DeviceCapabilities.D1 =1 (SR1), and if conditions exist such that a service
request (SRQ) would be generated, the device must send an Interrupt-IN packet with the format shown
below in Table 6.

Table 6 -- USB488 Interrupt-IN packet sent due to an SRQ condition

Offset | Field Size Value Description

0 bNotifyl 1 Bitmap D7 Must be 1. See the USBTMC specification, section 3.4.
D6..D0 | bTag. The bTag field must be 0x01.

1 bNotify2 1 StatusByte | For 488.2 USB488 interfaces, the format is the IEEE 488.2 defined
Status Byte returned during a serial poll. Otherwise, the format is
the IEEE 488.1 defined Status Byte.

When the response is queued, the Status Byte is modified in the same way an IEEE 488.2 device modifies
the Status Byte after an SRQ/serial poll sequence. This means a device must clear the Status Byte RQS bit
after a Status Byte (with RQS set) is queued to be sent on the Interrupt-IN pipe. See IEEE 488.2, Table 11-

2.

3.4.2 Interrupt-IN DATA sent due to READ_STATUS BYTE request

If a USB488 interface includes an Interrupt-IN endpoint, and a READ_STATUS_BYTE request is received,
the device must send an Interrupt-IN packet with the format shown below in Table 7.

Table 7 -- USB488 Interrupt-IN packet sent due to READ_STATUS_BYTE request

Offset | Field Size Value Description

0 bNotifyl 1 Number D7 Must be 1. See the USBTMC specification, section 3.4.

D6..D0 | The bTag value must be the same as the bTag value in
the READ_STATUS_BYTE request. See section 4.3.1.

1 bNotify2 1 StatusByte | For 488.2 USB488 interfaces, the format is the IEEE 488.2 defined
Status Byte returned during a serial poll. Otherwise, the format
is the IEEE 488.1 defined Status Byte.

April 14, 2003 9

USBTMC USB488 Subclass Specification Revision 1.0

4 Control endpoint requests

4.1 Standard Requests
See USB 2.0 specification, section 9.4.

4.2 USBTMC class specific requests
See the USBTMC specification, section 4.2, and sections 4.2.1 and 4.2.2 below.

4.2.1 INITIATE_CLEAR

Upon receiving the INITIATE_CLEAR request, the device performs actions similar to those specified for
Selected Device Clear in the IEEE 488 specifications. For 488.2 USB488 interfaces, see IEEE 488.2, section
5.8. Otherwise, see IEEE 488.1, section 2.10.

4.2.2 GET_CAPABILITIES

When a device receives this request, the device must queue the response shown below in Table 8.

Table 8 -- GET_CAPABILITIES response packet

Offset Field Size | Value Description

0-11 Reserved 12 Reserved | See the USBTMC specification, Table 37. 488.2 USB488 interfaces
must set USBTMClnterfaceCapabilities.D1 = 0 and
USBTMClInterfaceCapabilities.DO = 0.

12 bcdUSB488 2 BCD BCD version number of the relevant USB488 specification for this
(0x0100 or | USB488 interface. Format is as specified for bcdUSB in the USB 2.0
greater) specification, section 9.6.1.
14 USB488 1 Bitmap D7...D3 Reserved. All bits must be 0.
Interface D2 1 - The interface is a 488.2 USB488 interface.
Capabilities 0 - The interface is not a 488.2 USB488 interface.
D1 1 - The interface accepts REN_CONTROL,

GO_TO_LOCAL, and LOCAL_LOCKOUT requests.

0 - The interface does not accept REN_CONTROL,
GO_TO_LOCAL, and LOCAL_LOCKOUT requests.
The device, when REN_CONTROL,
GO_TO_LOCAL, and LOCAL_LOCKOUT requests
are received, must treat these commands as a non-
defined command and return a STALL handshake
packet.

DO 1 - The interface accepts the MsgID = TRIGGER
USBTMC command message and forwards
TRIGGER requests to the Function Layer.

0 - The interface does not accept the TRIGGER
USBTMC command message. The device, when the
TRIGGER USBTMC command message is receives
must treat it as an unknown MsgID and halt the
Bulk-OUT endpoint.

10 April 14, 2003

Revision 1.0

USBTMC USB488 Subclass Specification

15 USB488 Bitmap D7...D4 Reserved. All bits must be 0.
Device D3 1 - The device understands all mandatory SCPI
Capabilities commands. See SCPI Chapter 4, SCPI Compliance
Criteria.
0 - The device may not understand all mandatory SCPI
commands. If the parser is dynamic and may not
understand SCP, this bit must = 0.
D2 1 - The device is SR1 capable. The interface must have
an Interrupt-IN endpoint. The device must use the
Interrupt-IN endpoint as described in 3.4.1 to
request service, in addition to the other uses
described in this specification.
0 - The device is SRO. If the interface contains an
Interrupt-IN endpoint, the device must not use the
Interrupt-IN endpoint as described in 3.4.1 to
request service. The device must use the endpoint
for all other uses described in this specification.
See IEEE 488.1, section 2.7. If USB488Interface
Capabilities.D2 =1, also see IEEE 488.2, section 5.5.
D1 1 - The device is RL1 capable. The device must
implement the state machine shown in Figure 2.
0 - The device is RLO. The device does not implement
the state machine shown in Figure 2.
See IEEE 488.1, section 2.8. If USB488Interface
Capabilities.D2 =1, also see IEEE 488.2, section 5.6.
DO 1 - The device is DT1 capable.
0 - The device is DTO.
See IEEE 488.1, section 2.11. If USB488Interface
Capabilities.D2 = 1, also see IEEE 488.2, section 5.9.
16 Reserved All bytes Reserved for USB488 use. All bytes must be 0x00.
must be
0x00.

The following rules must be followed:
If USB488DeviceCapabilities.D0 =1 (DT1) then USB488InterfaceCapabilities. D0 must = 1.
If USB488DeviceCapabilities.D1 =1 (RL1) then USB488InterfaceCapabilities.D1 must = 1.
If USB488InterfaceCapabilities.D2 = 1 (488.2 USB488 interface) then USB488DeviceCapabilities.D2

1.
2.
3.

4.

must =1 (SR1).

If USB488DeviceCapabilities.D3 =1 (SCPI) then USB488DeviceCapabilities.D2 must =1 (SR1) and
USB488InterfaceCapabilities.D2 must = 1 (488.2 USB488 interface).

4.3 USBA488 subclass specific requests

In addition to standard requests and the USBTMC defined class specific requests, there are subclass
requests defined for devices with USB488 interfaces. These subclass defined requests are sent with a
SETUP packet with bmRequestType.Type = CLASS.

The set of USB488 subclass bRequest values are shown below in Table 9.

April 14, 2003

11

USBTMC USB488 Subclass Specification

Revision 1.0

Table 9 -- USB488 defined bRequest values

bRequest | Name Required/ | Description
Optional
0-127 Reserved Reserved | Reserved for use by USBTMC specification.
128 READ_STATUS_BYTE | Required. | Returns the IEEE 488 Status Byte.
129-159 | Reserved Reserved | Reserved by USB488 subclass specification.
160 REN_CONTROL Optional. | Mechanism to enable or disable local controls on a device.
161 GO_TO_LOCAL Optional. Mechanism to enable local controls on a device.
162 LOCAL_LOCKOUT Optional. | Mechanism to disable local controls on a device.
163-191 Reserved Reserved | Reserved by USB488 subclass specification.
192-255 | Reserved Reserved | Reserved for use by the VISA specification.

All USB488 subclass specific requests return data to the Host and have a data payload that begins with a
1 byte USBTMC _status field. The USBTMC _status values are defined in the USBTMC specification, Table
13 and below in Table 10.

Table 10 -- USB488 defined USBTMC_status values

USBTMC _status MACRO Recommended Description
interpretation by
Host software
0x00-0x1F Reserved Reserved See the USBTMC specification, Table 16.
0x20 STATUS_ Warning This status is valid if a device has received a
INTERRUPT_ READ_STATUS_BYTE request, the USB488 interface has
IN_BUSY an Interrupt-IN endpoint, and the device is unable to
queue the response packet on the Interrupt-IN endpoint
because the FIFO is full.
0x21-0x3F Reserved Warning Reserved for subclass use.
0x40-0x9F Reserved Reserved See the USBTMC specification, Table 16.
0xA0-0xBF Reserved Failure Reserved for subclass use.
0xCO0-0xFF Reserved Failure See the USBTMC specification, Table 16.

4.3.1 READ_STATUS_BYTE

The READ_STATUS_BYTE request provides the ability for a Host to read the IEEE 488 Status Byte on the
device.

For this request, the Setup packet fields are as shown below in Table 11.

Table 11 -- READ_STATUS_BYTE Setup packet

bmRequestType 0xA1 (Dir = IN, Type = Class, Recipient = Interface)
bRequest READ_STATUS_BYTE, see Table 9
wValue D7 Must be 0.
D6...D0 The bTag value (2 <= bTag <=127) for this request. The device must return this
bTag value along with the Status Byte. The Host should increment the bTag by 1
for each new READ_STATUS_BYTE request to help identify when the response
arrives on the Interrupt-IN endpoint.
D15..D8 | Reserved. Must be 0x00.
windex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0003. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device with a USB488 interface must be ready to receive a READ_STATUS_BYTE request at any time.

12 April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

4.3.1.1 Response format for USB488 interfaces without an Interrupt-IN endpoint

When a device receives READ_STATUS_BYTE, and the USB488 interface does not have an Interrupt-IN
endpoint, the device must queue the control endpoint response shown below in Table 12.

Table 12 -- READ_STATUS_BYTE control endpoint response format (no Interrupt-IN endpoint)

Offset | Field Size Value Description

0 USBTMC _status 1 Value Status indication for this request. See the USBTMC
specification, Table 16.

1 bTag 1 Value The bTag value from the READ_STATUS_BYTE request.

2 Status Byte 1 Value The format is the IEEE 488.1 defined Status Byte. RQS

must be 0. (If the USB488 interface does not have an
Interrupt-IN endpoint, the device has no service request
capability and is SRO. IEEE 488.1 requires SR1 to enter
into the APRS state, which is the only state where RQS =
True can be sent. See IEEE 488.1, section 2.7.3.3).

4.3.1.2 Response format for USB488 interfaces with an Interrupt-IN endpoint

When a device receives READ_STATUS_BYTE, and the USB488 interface has an Interrupt-IN endpoint,
the device must queue the control endpoint response shown below in Table 13. In addition, the device
must return a response on the Interrupt-IN endpoint. The format of the response on the Interrupt-IN
endpoint is shown in Table 7. The device must queue the Interrupt-IN endpoint response and then queue
this control endpoint response. If the Interrupt-IN endpoint response can not be queued because the
Interrupt-IN FIFO is full, the device must set the control endpoint response USBTMC _status =
STATUS_INTERRUPT_IN_BUSY.

Table 13 -- READ_STATUS_BYTE control endpoint response format (Interrupt-IN endpoint present)

Offset | Field Size Value Description

0 USBTMC _status 1 Value Status indication for this request. See the USBTMC
specification, Table 16, and this specification, Table 10.

1 bTag 1 Value The bTag value from the READ_STATUS_BYTE request.

2 Constant 1 0x00 Status Byte will be returned on Interrupt-IN endpoint.

4.3.1.3 Status Byte MAV bit

Devices with a 488.2 USB488 interfaces must set the Status Byte MAV-bit TRUE when the device is ready
to send data to the Host. MAV must be set even if the device has not yet received a MsgID =
REQUEST_DEV_DEP_MSG_IN. MAV must remain TRUE until the last byte in the Bulk-IN transfer has
been sent and there are no more Bulk-IN transfers ready to send. The MAV-bit may remain TRUE until
the last byte in the USBTMC message has been sent (See IEEE 488.2, section 11.2.1.2).

4.3.2 REN_CONTROL

The REN_CONTROL request, in combination with GO_TO_LOCAL and LOCAL_LOCKOUT, provides
the ability to enable or disable local controls on a device.

Devices with USB488 interfaces that report RL1 capability in the GET_CAPABILITIES response must
implement the following state machine. The USB 2.0 specification, Figure 8-17 shows a legend for state
machine diagrams. In addition, see Table 14 below.

April 14, 2003 13

USBTMC USB488 Subclass Specification Revision 1.0

REN and
(IMITIATE_CLEAR or
TRIGGER or
oo DEY_DEP_MSG_OUT)
— Configuration Change ar REMS
REM
GO_TO_LOCAL or
il ar
Bus Activity
REN and
LOCAL LOCKOUT LOCAL_LOCKOUT
IMITIATE_CLEAR or +
TRIGGER or
DEY_DEP_MSG_OUT
FWLS
GO_TO_LOGCAL or
Bus Activity
Figure 2 - RL state diagram for USB
Table 14 -- LOCAL REMOTE state machine terminology
State Diagram Term Explanation
LOCS Local State. See IEEE 488.1 section 2.8 and IEEE 488.2 section 5.6
LWLS Local with Lockout State. See IEEE 488.1 section 2.8 and IEEE 488.2 section 5.6
REMS Remote State. See IEEE 488.1 section 2.8 and IEEE 488.2 section 5.6.
RWLS Remote with Lockout State. See IEEE 488.1 section 2.8 and IEEE 488.2 section 5.6
pon “Power on” local message.
rtl “Return to local” local message.
- The device is detached from the USB or the device is suspended.
Bus Activity
Configuration Change This transition occurs when either:

o The device is in the “Address” state, a SET_CONFIGURATION request is received,
and the specified configuration includes a USB488 interface.

e The device is in the “Configured” state, the current configuration includes a USB488
interface, and the device receives a SET_CONFIGURATION request with a
configuration value of 0 or some other valid configuration value

See the USB 2.0 specification, Figure 9-1 and section 9.4.7.

DEV_DEP_MSG_OUT

Device received USBTMC command message with MsgID=DEV_DEP_MSG_OUT and
the USB488 interface is not talk-only.

TRIGGER

Device received USBTMC command message with MsgID=TRIGGER and the device
reports TRIGGER (GET_CAPABILITIES USB488DeviceCapabilities. DO = 1 (DT1)).

INITIATE_CLEAR

Device received INITIATE_CLEAR control endpoint request.

LOCAL_LOCKOUT

Device received LOCAL_LOCKOUT control endpoint request.

GO_TO_LOCAL

Device received GO_TO_LOCAL control endpoint request.

REN Remote Enable. Device received REN_CONTROL control endpoint request with wValue
=1, asserting REN.

S Not Remote Enable. Device received REN_CONTROL control endpoint with wValue = 0,

REN

de-asserting REN. This is the default power-on state for REN.

For this request, the Setup packet fields are as shown below in Table 15.

14

April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

Table 15 -- REN_CONTROL Setup packet

bmRequestType 0xA1l (Dir = IN, Type = Class, Recipient = Interface)
bRequest REN_CONTROL, see Table 9
wValue D7..D0 1 - Assert REN. REN remains asserted until explicitly de-asserted, a

Configuration Change occurs, or a power-on condition occurs.
0 - De-assert REN. Remains de-asserted until explicitly asserted.
D15...D8 Reserved. Must be 0x00.

windex Must specify interface number per the USB 2.0 specification, section 9.3.4.

wLength 0x0001. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device with a USB488 interface must be ready to receive a REN_CONTROL request at any time. If
GET_CAPABILITIES USB488InterfaceCapabilities.D1 = 1, then the device must forward REN_CONTROL
requests to the Function Layer. If GET_CAPABILITIES USB488InterfaceCapabilities.D1 = 0, then the
device must return a STALL handshake packet.

When the actions associated with the request have completed, the device must return the control
endpoint response shown in Table 16.

Table 16 -- REN_CONTROL response format

Offset | Field Size Value Description

0 USBTMC_status | 1 Value Status indication for this request. See the USBTMC
specification, Table 16.

4.3.3 GO_TO _LOCAL

The GO_TO_LOCAL request, in combination with REN_CONTROL and LOCAL_LOCKOUT, provides
the ability to enable or disable local controls on a device.

For this request, the Setup packet fields are as shown below in Table 17.

Table 17 -- GO_TO_LOCAL Setup packet

bmRequestType 0xA1 (Dir =N, Type = Class, Recipient = Interface)

bRequest GO_TO_LOCAL, see Table 9

wValue 0x0000

windex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0001. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device with a USB488 interface must be ready to receive a GO_TO_LOCAL request at any time. If
GET_CAPABILITIES USB488InterfaceCapabilities.D1 = 1, then the device must forward GO_TO_LOCAL
requests to the Function Layer. If GET_CAPABILITIES USB488InterfaceCapabilities.D1 = 0, then the
device must return a STALL handshake packet.

For required USB488 device behavior, see the state machine in Figure 2.

When the actions associated with the request have completed, the device must return the control
endpoint response shown in Table 18.

April 14, 2003 15

USBTMC USB488 Subclass Specification Revision 1.0

Table 18 -- GO_TO_LOCAL response format

Offset | Field Size Value Description

0 USBTMC _status | 1 Value Status indication for this request. See the USBTMC
specification, Table 16.

4.3.4 LOCAL_LOCKOUT

The LOCAL_LOCKOUT request, in combination with REN_CONTROL and GO_TO_LOCAL, provides
the ability to enable or disable local controls on a device.

For this request, the Setup packet fields are as shown below in Table 19.

Table 19 -- LOCAL_LOCKOUT Setup packet

bmRequestType 0xA1l (Dir = IN, Type = Class, Recipient = Interface)

bRequest LOCAL_LOCKOUT, see Table 9

wValue 0x0000

windex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0001. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device with a USB488 interface must be ready to receive a LOCAL_LOCKOUT request at any time. If
GET_CAPABILITIES USB488InterfaceCapabilities.D1 = 1, then the device must forward
LOCAL_LOCKOUT requests to the Function Layer. If GET_CAPABILITIES
USB488InterfaceCapabilities.D1 = 0, then the device must return a STALL handshake packet.

For required USB488 device behavior, see the state machine in Figure 2.
When the actions associated with the request have completed, the device must return the control

endpoint response shown in Table 20.

Table 20 -- LOCAL_LOCKOUT response format

Offset | Field Size | Value Description
0 USBTMC_status | 1 Value Status indication for this request. See the USBTMC specification,
Table 16.

16 April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

5 Descriptors

5.1 Standard Descriptors

The USB Descriptors, except where specified below, are as specified in the USBTMC specification and the
USB 2.0 specification.

5.1.1 Interface descriptor

Table 21 -- USB488 interface descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor in bytes.

1 bDescriptorType 1 0x04 INTERFACE Descriptor Type. See USB 2.0 specification,
Table 9-5.

2 bInterfaceNumber 1 Number 0-based number for this interface in this configuration.

3 bAlternateSetting 1 0x00 Default setting for this interface.

4 bNumEndpoints 1 Number Number of endpoints for this interface, not including the
default endpoint.

5 bInterfaceClass 1 0xFE Class code. See the USBTMC specification, Table 43.

6 bInterfaceSubClass 1 0x03 SubClass code. See the USBTMC specification, Table 43.

7 bInterfaceProtocol 1 0x01 Protocol code. See the USBTMC specification, Table 44.

8 iInterface 1 Index Index of string descriptor describing this interface.

A USB488 interface with a bInterfaceProtocol = 0x01 must have exactly one Bulk-OUT endpoint, exactly
one Bulk-IN endpoint, and may have at most one Interrupt-IN endpoint. If GET_CAPABILITIES
USB488DeviceCapabilites.D2 = 1 (SR1), the interface must have exactly one Interrupt-IN endpoint.
Additional endpoints must be placed in another interface.

5.1.2 USB488 Interrupt-IN endpoint descriptor

For USB488 interfaces with an Interrupt-IN endpoint, Table 22 below specifies the format of the Interrupt-
IN endpoint descriptor.

April 14, 2003 17

USBTMC USB488 Subclass Specification Revision 1.0

Table 22 -- Interrupt-IN endpoint descriptor

Offset Field Size Value Description

0 bLength 1 0x07 Size of this descriptor in bytes.

1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type. See USB 2.0 specification,
Table 9-5.

2 bEndpointAddress 1 Endpoint | As specified in the USB 2.0 specification, Table 9-13.

3 bmAttributes 1 Bitmap As specified in the USB 2.0 specification, Table 9-13.

4 wMaxPacketSize 2 Number As specified in the USB 2.0 specification, Table 9-13.

D15...D13 Reserved. All bits must be 0.

D12...D11 Number of additional transaction
opportunities per microframe. All bits
should be 0.

D10...D0 Maximum packet size (in bytes). If the
device does not send vendor specific
notifications, must be 0x02.

6 blnterval 1 Number As specified in the USB 2.0 specification, Table 9-13.

5.1.3 String Descriptors
See the USBTMC specification, section 5.1 and section 5.7 for string descriptor requirements.
If a USB488 device supports “*IDN?”, the “*IDN?” response should be such that:

e Fieldl, the Manufacturer part of the response, is the iManufacturer string descriptor mapped to
ASCII.
o TField2, the Model part of the response, is the iProduct string descriptor mapped to ASCIL
o Field3, the Serial number part of the response, if non-zero, is the iSerialNumber string descriptor
mapped to ASCIL
Field4, the firmware level part of the response, is vendor specific.

18 April 14, 2003

Revision 1.0

USBTMC USB488 Subclass Specification

6 Message Exchange Protocol for USB
Devices with a 488.2 USB488 interfaces must support the Message Exchange Protocol (MEP). All

requirements in IEEE 488.2 section 6, “Message Exchange Control Protocol”, must be followed with a

redefinition of the bav, brq, get, dcas, and RMT-sent signals shown in Table 23.

Table 23 -- USB MEP messages

Message Description
bav Byte available message.
Is set TRUE when a USBTMC command message with MsgID = DEV_DEP_MSG_OUT has
been parsed.
Is set FALSE when any of the following are true:
1. The device detects the Bulk-OUT transfer is completed. See the USBTMC specification,
section 3.2.
2. An INITIATE_ABORTED_BULK_OUT has been received and the current Bulk-OUT
transfer will be aborted.
3. AnINITIATE_CLEAR has been received.
4. The device is suspended or detached and all bytes have been transferred out of the Bulk-
OUT FIFO.
brq Byte requested message.
Is set TRUE when a USBTMC command message with MsgID = REQUEST_DEV_DEP_
MSG_IN has been parsed.
Is set FALSE when any of the following are true:
1. The Bulk-IN transfer to the Host is completed. The transfer is considered complete if and
only if a non-wMaxPacketSize packet has been sent.
2. An ABORTED_BULK_IN has been received and the current Bulk-IN transfer will be
aborted.
3. AnINITIATE_CLEAR has been received.
4. The device is suspended or detached.
get Group Execute Trigger message.
Is set when a USBTMC command message with MsgID = TRIGGER has been parsed and the
device reports TRIGGER (GET_CAPABILITIES USB488DeviceCapabilities.DO =1 (DT1)).
dcas Device Clear Active State
Is set TRUE when INITIATE_CLEAR request is received.
Is set FALSE immediately upon successfully sending a CHECK_CLEAR_STATUS response
with USBTMC_STATUS not equal to STATUS_PENDING.
RMT-sent Remote Message Terminator sent.
Is set TRUE when the last byte in a Bulk-IN USBTMC response message with MsgID =
REQUEST_DEV_DEP_MSG_IN transfer with EOM = 1 has been sent.
Is set FALSE by bav or brq.

6.1 MEP error processing and USB - clearing the Output Queue

According to the IEEE 488.2 Message Exchange Protocol, a device must clear the Output Queue when
executing INITIALIZE, UNTERMINATED or INTERRUPTED actions. If clearing the Output Queue
associated with a 488.2 USB488 interface, the device must Halt the Bulk-IN endpoint only if a Bulk-IN

transfer is in progress and response message data bytes have been queued but not sent.

April 14, 2003

19

USBTMC USB488 Subclass Specification Revision 1.0

Appendix 1: IEEE 488.1 compatibility (informative)

IEEE 488.1 bus messages
There are four different types of IEEE 488.1 bus messages:

e Uniline,

e Universal multiline,
e Addressed,

e Secondary.

The USB compeatibility for each is addressed below.

Uniline commands

The definition of uniline commands is found in IEEE 488.1, 2.13.2, “For this standard, a message derived
from or sent as a logical state of only one signal line is referred to as a uniline message.”

In IEEE 488.1, these commands are broadcast to all attached devices. In USB, there is no broadcast
mechanism.

Table 24 -- IEEE 488.1 compatibility - uniline commands

Uniline command Comment

Interface Clear (IFC) Host software may implement this by retiring all Bulk-OUT and Bulk-IN IRPs
to all attached devices with USB488 interfaces.

Remote Enable Host software may implement this by sending REN_CONTROL to all attached
devices with USB488 interfaces with RL1 capability.

Attention Does not apply to USB.

Identify Does not apply to USB.

Universal multiline commands

The definition of universal multiline commands is found in IEEE 488.1, 2.13.2, “For this standard, a
message derived from or sent as a combination of logical states of two or more signal lines is referred to
as a multiline message.”

In IEEE 488.1, these commands are broadcast to all attached devices. In USB, there is no broadcast
mechanism.

20 April 14, 2003

Revision 1.0

USBTMC USB488 Subclass Specification

Table 25 -- IEEE 488.1 compatibility - universal multiline commands

Universal multiline command

Comment

Device Clear

Host software may implement this by sending individual INITIATE_CLEAR
requests to all attached devices with USB488 interfaces.

Local Lockout

Host software may implement this by sending a combination of
REN_CONTROL and LOCAL_LOCKOUT requests to all attached devices with
USB488 interfaces.

Serial Poll Enable Does not apply to USB.
Serial Poll Disable Does not apply to USB.
Parallel Poll Unconfigure Does not apply to USB.

Addressed commands

In IEEE 488.1, these commands are multicast to all attached devices addressed to listen. In USB, there is

no multicast mechanism.

Table 26 -- IEEE 488.1 compatibility - addressed commands

Addressed command

Comment

Group Execute Trigger (GET)

Host software may implement this by sending individual TRIGGER or “*TRG”
commands to the appropriate USB488 interfaces, provided the interface
supports this capability (GET_CAPABILITIES USB488DeviceCapabilities.D0 =
1 (DT1)).

Selected Device Clear (SDC)

Host software may implement this by sending an INITIATE_CLEAR request to
the appropriate USB488 interfaces.

Go to local (GTL)

Host software may implement this by sending a combination of
REN_CONTROL and GO_TO_LOCAL requests to the appropriate USB488
interfaces.

Parallel Poll Configure (PPC)

Does not apply to USB.

Take Control (TCT)

Does not apply to USB.

Secondary commands

Secondary commands consist of the ASCII characters 96-127 decimal. They are used for extended talk and
listen secondary addresses and secondary parallel poll commands.

The addressing of sub devices in a complex instrument, accomplished in IEEE 488 by using secondary
commands, is beyond the scope of this document.

The parallel poll commands Parallel Poll Enable Command (PPE) and Parallel Poll Disable Command

(PPD) do not apply to USB.

Serial Polling

The IEEE 488.1 serial polling method (IEEE 488.1, 6.5.2), in which a device asserts SRQ and the controller
must then determine the device that has RQS set, does not apply to USB. However, all devices must
maintain a Status Byte and the Host may read the Status Byte at any time with the READ_STATUS_BYTE

request.

Parallel Polling

The IEEE 488.1 parallel polling method (IEEE 488.1, 6.5.4) does not apply to USB.

April 14, 2003

21

USBTMC USB488 Subclass Specification Revision 1.0

Interface Function Capabilities

The IEEE 488.1 specification defines interface functions and allowable subsets. The list of interface
functions and subsets for USB488 interfaces are shown in Table 27 below.

Table 27 -- IEEE 488.1 Interface Functions

IEEE 488.1 IEEE 488.1 Comments
Interface Function Subsets
Acceptor Handshake | AH1 IEEE 488.1 defines Acceptor Handshake capability as the

capability to guarantee proper reception of remote multiline
messages. All USB488 interfaces must have a Bulk-OUT endpoint
and all USB devices have a control endpoint. Therefore, USB488
interfaces are AH1.

Controller C0 The IEEE 488.1 Controller capability does not apply to USB.

Device Clear DC1 This USBTMC specification requires that all devices with a
USBTMC interface or USBTMC subclass interface must support
the INITIATE_CLEAR control endpoint request.

Device Trigger DTO0 or DT1 See GET_CAPABILITIES, Table 8.
Electrical Interface N/A The IEEE 488.1 Electrical Interface does not apply to USB.
Listener L2 IEEE 488.1 defines listen capability as the ability to receive device

dependent data. All devices with a 488.2 USB488 interface must
have the ability to receive and parse device dependent data.

LO Non 488.2 USB488 interfaces may be talk-only and not have the
ability to receive and parse device dependent data.
Parallel Poll PPO The IEEE 488.1 Parallel Polling capability does not apply to USB.
Remote Local RLO or RL1 See GET_CAPABILITIES, Table 8.
Service Request SRO or SR1 See GET_CAPABILITIES, Table 8.
Source Handshake SH1 IEEE 488.1 defines Source Handshake capability as the capability

to guarantee the proper transfer of multiline messages. All USB488
interfaces must have a Bulk-IN endpoint and all devices have a
control endpoint. Therefore, USB488 interfaces are SHI.

Talker T6 IEEE 488.1 defines talker capability as the ability to send device
dependent data (including status data during a serial poll
sequence). Since all device must implement the
READ_STATUS_BYTE control endpoint request and send status
data, all USB488 interfaces must be classified as having Talker
capability.

This USB488 specification requires that a USB488 interface must
become a listener when the interface receives a Bulk-OUT Header
while a Bulk-IN transfer is in progress.

22 April 14, 2003

Revision 1.0 USBTMC USB488 Subclass Specification

Appendix 2: IEEE 488.2 compatibility

Mandatory IEEE 488.2 common commands and queries

The table below shows the IEEE488.2 common commands and queries that map to USB. All devices with
488.2 USB488 interfaces must implement the IEEE 488.2 mandatory commands and queries shown below.

Table 28 -- Mandatory IEEE 488.2 commands and queries that map to USB488

Common Description Compliance
Commands

and Queries

*CLS Clear status command Mandatory
*ESE Standard event status enable command Mandatory
*ESE? Standard event status enable query Mandatory
*ESR? Standard event status register query Mandatory
*IDN? Identification query Mandatory
*OPC Operation complete command Mandatory
*OPC? Operation complete query Mandatory
*RST Reset command Mandatory
*SRE Service request enable command Mandatory
*SRE? Service request enable query Mandatory
*STB? Read Status Byte query Mandatory
*TRG Trigger command Mandatory if DT1 (device has trigger capability).
*TST? Self-test query Mandatory
*WAI Wait-to-continue command Mandatory

IEEE 488.2 conditionally mandatory (if PP1 or other than C0) commands and queries that do not map to
USB are shown below:

Table 29 -- Mandatory IEEE 488.2 commands and queries that do not map to USB488

Common Description

Commands

and Queries

*IST? Individual status query

*PRE Parallel poll enable register command
*PRE? Parallel poll enable register query
*PCB Pass control back command

Optional IEEE 488.2 common commands and queries

The table below shows the optional common commands and queries for devices with USB488 interfaces.

April 14, 2003 23

USBTMC USB488 Subclass Specification

Revision 1.0

Table 30 -- Optional IEEE 488.2 common commands and queries that map to USB488

Common Description Compliance

Commands

and Queries

*CAL? Calibration query Optional

*DDT Define device trigger command Optional. Requires DT1

*DDT? Define device trigger query Optional. Requires DT1

*DMC Define macro command Optional

*EMC Enable macro command Optional

*EMC? Enable macro query Optional

*GMC? Get macro contents query Optional

*LMC? Learn macro query Optional

*LRN? Learn device setup query Optional

*PMC Purge macros command Optional

*PSC Power on status clear command Optional

*PSC? Power-on status clear query Optional

*PUD Protected user data command Optional

*RCL Recall command Optional

*RDT Resource description transfer command Optional

*RDT? Resource description transfer query Optional

*RMC Remove individual macro command Optional. Implementation of this command requires
implementation of the Macro group commands
defined in IEEE 488.2 Table 10-2.

*SAV Save command Optional

*SDS Save default device setting command Optional. Implementation of this command requires

implementation of the Stored Settings group
commands defined in IEEE 488.2 Table 10-2.

IEEE 488.2 optional commands and queries that do not map to USB are shown below:

Table 31 -- Optional IEEE 488.2 common commands and queries that do not map to USB488

Common
Commands
and Queries

Description

*AAD

Accept address command

*DLF

Disable listener function command

24

April 14, 2003

