Lab 8, Part III

Due: Tuesday, November 27, at 6:00 p.m.

Print your full LAST name: __

Print your full first name: ___

Print your Lab TA’s name: __

What is your Lab TA’s box # (located outside of Wngr 234)? ________

Print your Lab SECTION # here: ------------------> .

Sign your name (full signature): __

Print today’s date: ___
Lab 8, Part III:

Using Energy to Analyze Motion

Purpose of the lab: To learn to analyze an object’s motion by accounting for all work done on it (i.e. all measurable changes to its energy).

Note: This is a take-home exercise—due by Tuesday, November 27, at 6:00 p.m..

Materials needed: No extra paper is needed—write on the pages provided.

Directions: Each exercise will present a situation—something to be calculated—but unless you’re given actual numbers, you do not need to do the calculation itself. But in every case, do a work-energy analysis, as if preparing for the calculation, as follows:

1. Choose (and indicate) the initial and final positions of the object for the motion you wish to analyze.

2. Choose (and indicate) where the gravitational potential energy \((U_G)\) is zero. You can state this in words or show on the diagram where you have assigned \(h = 0\). You will need to label other vertical distances on the diagram relative to this zero point.

3. Identify the various measurable forms of energy present in the mass at its initial and final positions. Is the mass moving at its initial or final position—and if so, what kind of motion is it? Is its initial position at a different vertical (gravitational) position than its final position? Is its initial position at a different position with respect to a spring than its final position? Write the fundamental Work-Energy Equation, then expand/simplify* it into its measurable parts, as follows:

\[
E_f = E_i + W_{ext} + Q_{ext}
\]

\[
K_f + U_f + E_{th,f} = K_i + U_i + E_{th,i} + W_{ext} + Q_{ext} \quad *
\]

\[
K_{T,f} + U_{G,f} + U_{S,f} = K_{T,i} + U_{G,i} + U_{S,i} + W_{ext} \quad *
\]

4. Identify how various forces do work on the mass during its journey from initial to final position. When working out an actual numerical problem, you may need a FBD and a full application of Newton’s Laws to solve for the values of individual forces. For any of the set-up-only exercises here, however, just identify which forces are doing work on the mass—and write the expression for that work. For example, the work done by a friction force would be written as \(W = F_K \cdot s \cdot \cos \theta\). You don’t need to expand \(F_K\) any further, but you do need to indicate \(\theta\) (and if it’s 0° or 90° or 180°, simplify \(\cos \theta\) into 1 or 0 or –1). And you need to label the displacement, \(s\), clearly on the diagram.

5. Now expand the Work-Energy Equation, substituting the expressions you know for \(K_T, U_G, U_S,\) and \(W_{ext}\) for the situation.

*You need not write out all terms of this middle step every time—it’s shown here just as a reminder of the complete Work-Energy Equation. For the purposes of practicing with \(K_T, U_G,\) and \(U_S\) here, we’ll ignore other forms of energy the mass might also hold—forms that change only in tiny (negligible) amounts in these examples, such as: \(U_e\) (the energy the mass could contain due to its proximity to an electric field); \(U_B\) (the energy the mass could contain due to its proximity to a magnetic field); \(E_{ch}\) (the energy the mass contains in chemical form—the kind that’s released via oxidation, for example); and, most notably, \(E_{th}\) (the thermal energy the mass contains—the kind it releases/absorbs via heat transfer). For the same reason, we’re ignoring \(Q_{ext}\) (heat flow) here—that’s the other way energy enters/leaves a mass.
EXAMPLE: At point A, a mass m is already sliding to the right, at a speed v_i, on a level, frictionless surface. As it slides for a distance s_a, forces F_1 and F_2 are applied to the mass, at angles θ_1 and θ_2, as shown. Then, for a distance s_b, the mass slides over a level portion of surface with a friction coefficient μ_k. Then it slides up a frictionless slope, rising a vertical distance y, then horizontally once again, as shown, where it encounters some unknown friction over a distance s_c. After all that, the mass is still moving to the right with a speed v. Do a work-energy analysis on this mass as if you wish to calculate its speed at point B.

\[
\begin{align*}
W_{F1} &= F_1 s_a \cos \theta_1, \quad \text{where} \quad \theta_1 = \phi_1; \\
W_{F2} &= F_2 s_a \cos \theta_2, \quad \text{where} \quad \theta_2 = 180 - \phi_2; \\
W_{Fkb} &= F_{kb} s_b \cos \theta, \quad \text{where} \quad \theta = 180;
\end{align*}
\]

To correctly see the angle θ, always place the force and displacement vectors tail-to-tail.

There is no spring (elastic) potential energy in this situation; and $h_i = 0$. Therefore:

\[
\begin{align*}
K_{Tf} + U_{Gf} + U_{Sf} &= K_{Tf} + U_{Gf} + U_{Sf} + W_{ext} \\
(1/2)mv_f^2 + mg(y) &= (1/2)mv_i^2 + W_{F1} + W_{F2} + W_{Fkb} \\
(1/2)mv_B^2 + mgy &= (1/2)mv_i^2 + F_1 s_a \cos \phi_1 + F_2 s_a \cos(180 - \phi_2) - F_{kb} s_b,
\end{align*}
\]
EXERCISE 1. Starting from rest, a block of mass m is pushed across a level surface (μ_k) by a constant force F, as shown here. Suppose you wish to calculate its velocity after traveling a distance d. Do the work-energy analysis necessary to let you do that. You do not need to do the actual calculation for the velocity.

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation:
EXERCISE 2. How much work will **you** do by pushing horizontally a 160 kg box 10.3 m across a rough floor without acceleration, if the effective coefficient of friction is 0.50?
EXERCISE 3: Beginning from rest, you begin a hike at an elevation of 1500m and climb to the summit of a 2660-m peak, stopping there. If you have a mass of 66.5-kg…

(a) What is the change in your gravitational potential energy?

(b) What is the minimum work you need to do to achieve this?

(c) Will the actual work done be greater than this? Explain.
EXERCISE 4. Tarzan is running along a level jungle path at a steady speed of 5.0 m/s when he grasps the end of a 4.0-m vine that is hanging vertically from a tree.

(a) How high can he swing upward?

(b) Does the length of the vine affect the answer?

(c) Does Tarzan’s mass affect the answer?
EXERCISE 5: A mass m is falling freely (without rotation) straight down, initially at a speed v_i. Then, after falling an additional distance d, its speed has tripled. Set up the work-energy equation that you would need to solve for d. You do not need to do the solving.
EXERCISE 6: At a vertical distance d above the ground, a freely-falling skydiver (mass m) has a speed (vertically downward) of v_i. At that moment, she opens her parachute. The constant tension force exerted on the skydiver by the parachute thereafter is F_T. Do a work-energy analysis as if you were preparing to calculate her impact speed. You do not need to calculate the impact speed.

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation:
EXERCISE 7: Starting from rest, a block of mass m is pushed up an incline (θ) by a constant horizontal force, F. The block travels a distance d along the incline surface (μ_k) and rises a vertical distance h. Do the work-energy analysis necessary to calculate the speed of the block at the top of the incline. You do not need to calculate that speed.
EXERCISE 8: A block is sliding along a level, frictionless surface. Its speed at point A is v_A. Then it encounters an incline whose total vertical rise is y_B. The block travels off the upper end of the incline and becomes a projectile, striking the level surface as shown. Prepare an energy analysis that would let you answer the following question: What is the block’s speed at point C (the peak of its trajectory) if it is y_C meters above the level surface at that point? You do not need to actually calculate the answer.
EXERCISE 9: A block is sliding along a level, frictionless surface. Then it encounters an incline whose total vertical rise is y_B. The block travels off the upper end of the incline and becomes a projectile, striking the level surface as shown. Its speed at point B is v_B. Prepare an energy analysis that would let you answer the following question: What is the block’s impact speed? You do not need to actually calculate the answer.

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation:
EXERCISE 10: A block slides, starting at a speed v_i, down a frictionless incline of height H and through the “loop-the-loop” of radius R. After the block leaves the loop, it crosses a level surface with friction (μ_K), coming to rest after a distance d. Do the work-energy analysis necessary to calculate its speed at the top of the loop. (You do not need to calculate that speed.) Disregard any rotational kinetic energy.

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation:
EXERCISE 11: A block slides, starting at a speed v_i, down a frictionless incline of height H and through the “loop-the-loop” of radius R. After the block leaves the loop, it crosses a level surface with friction (μ_K), coming to rest after a distance d. Do the work-energy analysis necessary to calculate d. (You do not need to actually calculate d.) Disregard any rotational kinetic energy.

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation:
EXERCISE 12: An archer pulls the bowstring back for a distance of 0.470 m before releasing an arrow horizontally. The bow and string act like an ideal spring whose spring constant is 425 N/m.

(a) What is the elastic potential energy of the drawn bow?

(b) The arrow has a mass of 0.0300 kg. How fast is it traveling when it leaves the bow?
EXERCISE 13: An ideal spring with a spring constant of 450 N/m is mounted vertically on the floor. From directly above the spring (which is initially relaxed—unstrained), a 0.300-kg block is dropped from rest. It collides with and sticks to the spring, which is compressed by 2.50 cm at the moment when it has brought the block to a halt (temporarily). Disregarding air resistance, from what height above the compressed spring’s position was the block dropped?

The fundamental Work-Energy equation:

Analysis of the external work being done:

Detailed expansion of the Work-Energy equation for this situation: