How do vectors help us understand motion? It’s all about the DIFFERENCE (Δ) vector

As we’ve seen, to use math to fully describe the position of an object, we must use a vector, because it tells us both the magnitude (distance) and direction of that position (measuring from agreed-upon zero points for both distance and angle). Without both pieces of information, we have just a number—a scalar—not sufficient to fully describe an object’s position.

Scalar vs. Vector

<table>
<thead>
<tr>
<th>Scalar</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>(magnitude only)</td>
<td>(magnitude and direction)</td>
</tr>
<tr>
<td>Distance (d)</td>
<td>Position (x)</td>
</tr>
</tbody>
</table>

But motion is about change (the change of position, first and foremost).

Question: If an object starts at an initial position (call it position_i), then it moves to a final position (for position_f), how do we measure its change of position, $\Delta \text{position}$?

Well, start with something simpler—a non-vector situation. How would you measure the change in an simple (scalar) quantity? Suppose you start the day with a certain amount of money in your pocket, say, $23.00 (call this cash_i). Then at the end of the day, you have a different amount, say, $39.00 (call this cash_f). What was the change in your pocket money (Δcash)—and how do you calculate it?

You simply subtract: $\text{cash}_f - \text{cash}_i = \Delta \text{cash} \quad \text{In other words:} \quad \Delta \text{cash} = \text{cash}_f - \text{cash}_i$

Rearrange this (still saying the same thing): $\text{cash}_i + \Delta \text{cash} = \text{cash}_f \quad \text{In other words:} \quad \text{cash}_i + \Delta \text{cash} = \text{cash}_f$

What you start with, plus whatever change that happened, must result in what you end up with. Common sense, right?

It's the same for vectors (such as position): $\text{position}_i + \Delta \text{position} = \text{position}_f$

But we must keep in mind what it means to do vector addition: This is how we represent $\text{position}_i + \Delta \text{position} = \text{position}_f$:

![Diagram](image-url)
This is the key to understanding all motion in Newtonian physics—that change (Δ) vector.

In the **special case** where the motion is all along one line (an x-axis, for example), the diagram simplifies.

In this special case, there’s no need for any trig to figure things out—just add the magnitudes, using a simple \pm sign to indicate direction.

Above, all three vectors would have $+$ signs associated with them, since they’re all pointing in the $+x$ direction. Not true below:

Important note: This is the only circumstance when we can do this simple addition of the vector magnitudes, together with their signs—when all three of the vectors (*initial*, *final* and Δ) are **collinear** along the axis! That means you can do this only when combining x-axis vectors; or y-axis vectors.

But that’s the key to adding vectors in general. You can simply sum (using the above easy technique) the x-vectors (to get a resultant x-vector) and y-vectors (to get a resultant y-vector); then you build the final result from those two resultant vector components (see again part E of the Math Review if this technique is still hazy for you).

This is true for all vector summing—including the “sum that shows the change:” $\text{vector}_i + \Delta \text{vector} = \text{vector}_f$.

Representing vector quantities as free-floating arrows is one very good form of visual representation (the “V” in ODAVEST), but there are others that are also very useful for representing motion: **Motion Diagrams** and **Time Graphs**.

1. Read Sections 1.5-1.8 in the textbook.

2. Try Conceptual Questions 5 and 7 (page 28).