The faculty have listed the following as potential projects for students undertaking a senior thesis.

  Current 2017/18 students Total 2017/18 projects Project short title
Dray, Tevian (Mathematics)   0 Sabbatical leave
Giebultowicz, Tomasz    several Contact Dr. Giebultowicz (experimental or computational)
Gire, Elizabeth   several Contact Dr. Gire (Physics Education)
Graham, Matt 3: Tafoya, Colbert, Brandt  2 Optoelectronics: confinement and current generation in emerging materials; paradigms redevelopment lab
Hadley, Kathryn  2: Varga, Focht 3 Computational astrophysics: modeling protostellar systems; Rossby wave instabilities.
Herman, Greg   3 Surface Structure Modeling (modeling), Electron Stimulated Desorption (expt); Temperature programmed Desorption (expt)
Jansen, Henri   1 Computational project
Kornilovich, Pavel (Hewlett Packard)   2 (computational) Stable knots in nematic liquid crystals
Lazzati, Davide  2: Hatcher, Randolph

 0

 No new students this year
Lee, Yun-Shik   several Contact Dr.Lee (experimental optics)
Manogue, Corinne   0  Sabbatical leave
McIntyre, David   3  1) Optical spectroscopy of materials. (exp). 2) Optimized laser focusing via adaptive optics. (exp)
Minot, Ethan   Determine the mobility of charge carriers in a graphene sheet - design/purchase/build a 6-contact spring-loaded centimeter-scale rig
Ostroverkhova, Oksana 3 (1) (Time-resolved measurements of charge transfer using optical tweezers)
Qiu, Weihong 2-3 Experimental/Computation Biophysics. Potential projects are : i) In silico characterization of the interaction of molecular motor proteins with the tracks they run on;  and ii) Characterize the mechanism of bidirectional kinesin motor proteins. 
Roundy, David 1: Simpson   4 (computational) (1) freezing behavior of hard polyhedron fluids. (2) freezing of a softly repulsive fluid, (3) comparing efficiency of histogram algorithms, (4) modeling of dynein motor protein
Schellman, Heidi 2:Teklu, ? 3 neutrino physics
Schneider, Guenter  2: Goode, Grigorian (plus Jepson)  3 Contact Dr. Schneider (computational biophysics and computational condensed matter and neural networks)
Sun, Bo 1: Chase 1-2 Characterizing self-propelled tumor spheroid in artificial tissue.
Tate, Janet

2: Lance, Dethlefs

3 (experimental) (1) Optical properties of CuSnSe alloys and TiO2  (2) Transport & piezoelectric properties of semiconductor alloys
Walsh, KC  1: Bigelow 2  Project BoxSand

Dray:

On sabbatical 2017/18

Giebultowicz: Contact Dr. Giebultowicz (experimental or computational)

Gire:  Contact Dr. Gire (Physics Education)

Graham:The proposed research resolves ultrafast (10 fs to 1 ns) electron dynamics on the ultrasmall (<1 um) length scales.

(I.) What processes promote carrier dissociation in nanoscale solar cells?  Students will acquire spectrally resolved absorption & photocurrent movies of nanomaterials.

(II.) Organic solar cells have large spatial inhomogeneity in their electron relaxation and transport dynamics, how can we understand and boost device efficiency? Students will examine the optoelectronic properties.

Hadley:
(I) Computational astrophysics: modeling protostellar systems

(II) Computational astrophysics:Rossby wave instabilities.

Herman:

1. Surface Structure Modeling (modeling & analysis):  The interfacial surface structure of materials define much of their electronic and chemical properties.  We have obtained experimental low energy ion scattering/direct recoil spectroscopy data from epitaxial films, and are looking for a student to analyze the data using a software package (SARIC) that describes the physics of the experimental method.
2. Electron Stimulated Desorption (Equipment Development): We are performing electron stimulated desorption experiments to determine the effect of the interaction of low energy electron radiation with surfaces.  For the experiments we currently use a single electron kinetic energy.  Our goal is to sweep the electron kinetic energy and monitor the effects of desorption species.  A range of samples will be evaluated to simulate semiconductor processing and astrochemistry. Experience with software and computer interfacing valuable.
3. Temperature programmed Desorption (Equipment Development): We have integrated a mass spectrometer with a temperature programmed controller in our X-ray photoelectron spectrometer.  We are interested in having a student integrate the output from the mass spec and temperature controller into a single software package.  The experiments will investigate the chemical changes related to temperature history.  Experience with software and computer interfacing valuable.

(Dr. Herman is a professor in Chemical Engineering & an adjunct in Physics.  Contact him at greg.herman@oregonstate.edu)

Jansen:

(1) Computational project.

Kornilovich:

Computational project - Stable knots in nematic liquid crystals: Nematic liquid crystals possess line topological defects known as disclinations that typically terminate on the system’s boundaries. It is of fundamental importance to know what line defects can exist in the bulk of a liquid crystal with boundaries removed.  We will be searching for stable disclination defects in the form of closed loops, links and knots. The project will involve numerical minimization of the Frank energy functional and will utilize advanced 3D visualization methods. The project lies at an intersection of theoretical physics, engineering and computer science.

(Contact Dr. Kornilovich at kornilop@oregonstate.edu or pavel.kornilovich@gmail.com)

Lazzati:

Currently full

Lee: Contact Dr. Lee (experimental optics)

Manogue:

On sabbatical 2017/18

McIntyre:

(1) Optical spectroscopy of materials.  Measure transmission and reflection of thin film samples and determine optical properties such as absorption coefficient and index of refraction.
(2) Optimized laser focusing via adaptive optics.  Alter the phase profile of a laser beam with a liquid crystal spatial light modulator (SLM) and improve the laser beam focusing.  Ultimately, we could use this to focus light through a turbid medium such as a glass of milk.  Use skills from PH 481.

Minot:

Determine the mobility of charge carriers in a graphene sheet - design/purchase/build a 6-contact spring-loaded centimeter-scale rig

Ostroverkhova:

This group has 3 continuing students; there may be a possibiliity for one additional.  Time-resolved measurements of charge transfer using optical tweezers 

Qiu: 

Experimental/Computation Biophysics. Potential projects are : i) In silico characterization of the interaction of molecular motor proteins with the tracks they run on;  and ii) Characterize the mechanism of bidirectional kinesin motor proteins.

Roundy:

1. Computationally modeling, using Monte Carlo, the freezing behavior of hard polyhedron fluids.
2. Studying the freezing of a softly repulsive fluid using Monte Carlo methods.  This project would explore this system to discover how the feezing (or melting) temperature depends on density.
3. Comparing efficiency of histogram Monte Carlo algorithms.  This would test the convergence rate of different histogram algorithms for Monte Carlo simulations, which would involve running large simulations of the square well liquid using different methods.
4. Modeling of dynein motor protein.  This project involves simulating a model of dynein, collecting statistics to determine the behavior, and then tweaking its parameters to better match with experimental results.

Students working in the Roundy research group will attend weekly group meetings.  Every project involves some level of programming work.  This programming may be done on students' own computers, but large computations will be run on the group cluster which runs linux.

Schneider: Contact Dr. Schneider (computational biophysics and computational condensed matter)

Sun:

(1) Experimental project. We will use confocal microscopy to characterize how tumor aggregates move in 3D extracellular matrix. Note: this project requires previous experience of cell culture, wet chemistry technique and confocal imaging. Otherwise, training will be provided in the lab and may take up to a month (20 hours). I expect the student to spend at least 5 hours per week on the project, and cumulate at least half year of data. Therefore I ask interested student to discuss with me well ahead of time. The project can be done by a single student or a team of 2.

Tate:

(1) Experimental project.  Characterize thin-film materials by optical reflection and transmission, ellipsometry and Raman spectroscopy.  Find the semiconductor band gap and complex refractive index of materials that are relevant to solar cells, energy storage, catalysis, etc. (1-2 students)

(2) Experimental project.  Characterize thin-film materials by electrical and thermal transport.  Find the resistivity, thermoelectric coefficient, and X-ray diffraction patterns of materials that are relevant to solar cells, energy storage, catalysis, etc. (1-2 students)

Undergrads attend weekly group meetings and work with the lead graduate student on a project.  They have their own projects, but are expected to collaborate extensively to contribute to the group effort.

Walsh:

Project BoxSand aims to track students' use of open source content in the introductory courses. Students would help analyse the large data sets.