
Activity 2: Solution for electric potential due to a ring

Find the electrostatic potential in all space due to a ring with total charge Q and
radius R

V (~r) =
1

4πε0

N∑
i=1

qi
|~r − ~ri|

(1)

For a ring of charge this becomes

V (~r) =
∫

ring

1
4πε0

λ(~r ′) |d~r ′|
|~r − ~r ′|

(2)

where ~r denotes the position in space at which the potential is measured and ~r ′ denotes the position of the
charge.

In cylindrical coordinates, |d~r ′| = Rdφ′, where R is the radius of the ring. Thus,

V (~r) =
1

4πε0

2π∫
0

λ(~r ′)Rdφ′

|~r − ~r ′|
(3)

Assuming constant linear charge density for a ring with charge Q and radius R, λ(~r ′) = Q
2πR Thus,

V (~r) =
1

4πε0
Q

2π

2π∫
0

dφ′

|~r − ~r ′|
(4)

Since ~r and ~r ′ are not necessarily in the same direction, we cannot simply leave |~r − ~r ′| in curvilinear
coordinates and integrate directly. One solution to this problem is to rewrite |~r−~r ′| in cartesian coordinates

|~r − ~r ′| =
√

(x− x′)2 + (y − y ′)2 + (z − z ′)2 (5)

Setting the ring in the x, y plane with the center at the origin and then rewriting in cylindrical coordinates
results in

|~r − ~r ′| =
√

(r cosφ−R cosφ′)2 + (r sinφ−R sinφ′)2 + (z − 0)2 (6)

Which simplifies to
|~r − ~r ′| =

√
r2 − 2rR cos(φ− φ′) +R2 + z2 (7)

Substituting into Eq. 4 results in the elliptic integral

V (r, φ, z) =
1

4πε0
Q

2π

2π∫
0

dφ′√
r2 − 2rR cos(φ− φ′) +R2 + z2

(8)

1 The z axis

For points on the z axis, r = 0 and the integral simplifies to

V (r, φ, z) =
1

4πε0
Q

2π

2π∫
0

dφ′√
R2 + z2

(9)



And thus

V (r, φ, z) =
Q

4πε0
1√

R2 + z2
(10)

1.1 Power series expansions for z axis

To create the power series expansion for |z| << R, factor out R from the denominator

V (r, φ, z) =
Q

4πε0
1
R

1√
1 + z2

R2

(11)

Using the power series (1 + z)p = 1 + pz + p(p−1)
2! z2 + ... results in

V (x, y, z) =
Q

4πε0
1
R

(
1− 1

2
z2

R2
+

3
8
z4

R4
+ ...

)
(12)

The power series expansion for z >> R is

V (x, y, z) =
Q

4πε0
1
z

(
1− 1

2
R2

z2
+

3
8
R4

z4
+ ...

)
(13)

2 The x axis

For points on the x axis, z = 0 and φ = 0, so the integral simplifies to

V (r, φ, z) =
1

4πε0
Q

2π

2π∫
0

dφ′√
r2 − 2rR cosφ′ +R2

(14)

Which can be rewritten as

V (r, φ, z) =
1

4πε0
Q

2π

2π∫
0

(r2 − 2rR cosφ′ +R2)−1/2dφ′ (15)

In this case the power series expansion can be done before integration and then the power series can be
integrated. For x >> R, factor out an 1/r to obtain

V (r, φ, z) =
1

4πε0
Q

2π

2π∫
0

1
r

(
1− 2R

r
cosφ′ +

R2

r2

)−1/2

dφ′ (16)

Let ε = − 2R
r cosφ′ + R2

r2

V (r, φ, z) =
1

4πε0
Q

2π
1
r

2π∫
0

(1 + ε)−1/2dφ′ (17)

The power series expansion now yields

V (r, φ, z) =
1

4πε0
Q

2π
1
r

2π∫
0

(
1− 1

2
ε+

3
8
ε2 − 15

48
ε3 + ...

)
dφ′ (18)



Substituting − 2R
r cosφ′ + R2

r2 for ε results in the integrand

1 +
(
−1

2

)(
−2R
r

cosφ′ +
R2

r2

)
+
(

3
8

)(
4R2

r2
cos2 φ′ − 4R3

r3
cosφ′ +

R4

r4

)
(19)

+
(
−15

48

)(
−8R3

r3
cos3 φ′ +

8R4

r4
cos2 φ′ − 4R5

r5
cosφ′ +

R6

r6

)
+ ... (20)

Adding like terms and getting rid of any powers greater than third-order in r yields

1 +
R

r
cosφ′ − R2

2r2
+

3R2

2r2
cos2 φ′ − 3R3

2r3
cosφ′ +

5R3

2r3
cos3 φ′ + ... (21)

Using this power series and performing the integral results in the first two non-zero terms for the potential

V (r, φ, z) =
1

4πε0
Q

2π
1
r

(
2π +

π

2
R2

r2
+ ...

)
(22)

Which can be simplified to

V (r, φ, z) =
Q

4πε0
1
r

(
1 +

1
4
R2

r2
+ ...

)
(23)
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