Activity 2: Solution for electric potential due to a ring

Find the electrostatic potential in all space due to a ring with total charge () and
radius R
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For a ring of charge this becomes
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where 7 denotes the position in space at which the potential is measured and #’ denotes the position of the
charge.

In cylindrical coordinates, |d#’'| = Rd¢’, where R is the radius of the ring. Thus,

Assuming constant linear charge density for a ring with charge Q and radius R, A\(7') = 5* R Thus,
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Since # and 7’ are not necessarily in the same direction, we cannot simply leave |# — #'| in curvilinear
coordinates and integrate directly. One solution to this problem is to rewrite |# —#’| in cartesian coordinates
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Setting the ring in the x,y plane with the center at the origin and then rewriting in cylindrical coordinates
results in

# — 7| = \/(rcos¢ — Rcos¢')? + (rsing — Rsin¢’)2 + (z — 0)2 (6)
Which simplifies to
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Substituting into Eq. 4 results in the elliptic integral

d¢’

1
Vir,é2) = 47T€027T/\/7"2—27"Rcos(¢ @) + R? + 22

1 The z axis

For points on the z axis, r = 0 and the integral simplifies to
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And thus
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To create the power series expansion for |z| << R, factor out R from the denominator
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Using the power series (14 2)? =1+ pz + p(p D22 4 results in
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The power series expansion for z >> R is
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2 The z axis

For points on the x axis, z = 0 and ¢ = 0, so the integral simplifies to
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Which can be rewritten as
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In this case the power series expansion can be done before integration and then the power series can be
integrated. For x >> R, factor out an 1/r to obtain
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The power series expansion now yields
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Substituting —¥ cos ¢’ + f—; for € results in the integrand
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Adding like terms and getting rid of any powers greater than third-order in r yields
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Using this power series and performing the integral results in the first two non-zero terms for the potential
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Which can be simplified to
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