Activity 3: Solution for electric field

Find the electric field in all space due to a ring with total charge ) and radius R
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For a ring of charge this becomes
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where 7 denotes the position in space at which the electric field is measured and #’ denotes the position of
the charge.

In cylindrical coordinates, |d#'| = Rd¢’, where R is the radius of the ring. Thus,
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Assuming constant linear charge density for a ring with charge Q and radius R, A\(#") = ﬁ Thus,
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Since 7 and 7’ are not necessarily in the same direction, we cannot simply leave |# — 7’| in curvilinear
coordinates and integrate directly. One solution to this problem is to go back and forth between cylindrical
and cartesian coordinates to represent ¥ — 7’
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And
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The electric field can now be represented by the elliptic integral
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1 The 2 axis

For points on the z axis, r = 0 and the integral simplifies to
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Doing the integral results in
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2 The z axis
For points on the x axis, z = 0 and ¢ = 0, so the integral simplifies to
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let u = r? — 2rRcos ¢’ + R?, then du = 2rRsin ¢’d¢’, and for the j component the integral becomes
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Doing the integral results in
E;=0

Thus the 7 component disappears and results in the elliptic integral with only an z component
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