Activity 3: Solution for electric field

Find the electric field in all space due to a ring with total charge Q and radius R

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i \, \vec{r} - \vec{r}_i}{|\vec{r} - \vec{r}_i|^3} \tag{1}$$

For a ring of charge this becomes

$$\vec{E} = \int_{\text{ring}} \frac{1}{4\pi\epsilon_0} \frac{\lambda(\vec{r}') |d\vec{r}'| \vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}$$
(2)

where \vec{r} denotes the position in space at which the electric field is measured and \vec{r}' denotes the position of the charge.

In cylindrical coordinates, $|d\vec{r}'| = R d\phi'$, where R is the radius of the ring. Thus,

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \frac{\lambda(\vec{r}') R d\phi' \vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}$$
(3)

Assuming constant linear charge density for a ring with charge Q and radius R, $\lambda(\vec{r}') = \frac{Q}{2\pi R}$ Thus,

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2\pi} \int_0^{2\pi} \frac{d\phi' \, \vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \tag{4}$$

Since \vec{r} and \vec{r}' are not necessarily in the same direction, we cannot simply leave $|\vec{r} - \vec{r}'|$ in curvilinear coordinates and integrate directly. One solution to this problem is to go back and forth between cylindrical and cartesian coordinates to represent $\vec{r} - \vec{r}'$

$$\vec{r} - \vec{r}' = (x - x')\hat{\imath} + (y - y')\hat{\jmath} + (z - z')\hat{k}$$

$$\tag{5}$$

$$= (r\cos\phi - R\cos\phi')\hat{\imath} + (r\sin\phi - R\sin\phi')\hat{\jmath} + (z - z')\hat{k}$$
(6)

And

$$|\vec{r} - \vec{r}'| = \sqrt{r^2 - 2rR\cos(\phi - \phi') + R^2 + z^2}$$
 (7)

The electric field can now be represented by the elliptic integral

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2\pi} \int_0^{2\pi} \frac{\left[(r\cos\phi - R\cos\phi')\hat{\imath} + (r\sin\phi - R\sin\phi')\hat{\jmath} + z\hat{k} \right] d\phi'}{(r^2 - 2rR\cos(\phi - \phi') + R^2 + z^2)^{3/2}}$$
(8)

1 The z axis

For points on the z axis, r = 0 and the integral simplifies to

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2\pi} \int_{0}^{2\pi} \frac{\left[-R\cos\phi' \,\hat{\imath} + -R\sin\phi' \,\hat{\jmath} + z\hat{k} \right] d\phi'}{(R^2 + z^2)^{3/2}}$$
(9)

Doing the integral results in

$$\vec{E} = \frac{Q}{4\pi\epsilon_0} \frac{z\hat{k}}{(R^2 + z^2)^{3/2}} \tag{10}$$

2 The x axis

For points on the x axis, z=0 and $\phi=0$, so the integral simplifies to

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2\pi} \int_{0}^{2\pi} \frac{\left[(r - R\cos\phi')\,\hat{\imath} + -R\sin\phi'\,\hat{\jmath} \right] d\phi'}{(r^2 - 2rR\cos\phi' + R^2)^{3/2}}$$
(11)

let $u = r^2 - 2rR\cos\phi' + R^2$, then $du = 2rR\sin\phi' d\phi'$, and for the $\hat{\jmath}$ component the integral becomes

$$\vec{E}_{j} = \frac{1}{4\pi\epsilon_{0}} \frac{Q}{2\pi} \frac{1}{2r} \int_{0}^{2\pi} \frac{du\hat{j}}{u^{3/2}}$$
 (12)

Doing the integral results in

$$\vec{E}_j = 0 \tag{13}$$

Thus the \hat{j} component disappears and results in the elliptic integral with only an \hat{i} component

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2\pi} \int_0^{2\pi} \frac{(r - R\cos\phi')\,\hat{\imath}\,d\phi'}{(r^2 - 2rR\cos\phi' + R^2)^{3/2}}$$
(14)