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Trigonometry!
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Special Relativity!
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• Points in spacetime are called events.

• Lines with slope m = ±1 represent beams of light.

• Vertical lines represent the worldline of an object at rest.

• Horizontal lines represent snapshots of constant time, that is, events which
are simultaneous (in the given reference frame).

• Lines with slope |m| > 1 (called timelike) represent the worldlines of ob-
servers moving at constant speed.

• The speed of such an observer is given by c tanh β, where β is the (hyper-
bolic) angle between the worldline and a vertical line.

• The distance between two events along such a line is just the time between
them as measured by the moving observer.

• Lines with slope |m| < 1 (called spacelike) represent lies of simultaneity as
seen by an observer moving at constant speed.

• The distance between two events along such a line is just the distance
between them as measured by the corresponding observer.
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One twin travels 24 light-years to star X at speed 24
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Straight path takes longest!
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Einstein addition formula!
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Energy-momentum is conserved!



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3

4



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3

4
α

p

E
c mc



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3

4
α

p

E
c mc

E = mc2 cosh α =
5

4
mc2



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3

4
α

p

E
c mc

E = mc2 cosh α =
5

4
mc2

Etot = 2E =
5

2
mc2



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
5c. What is the mass

of the resulting lump of clay?

5

3

4
α

p

E
c mc

E = mc2 cosh α =
5

4
mc2

Etot = 2E =
5

2
mc2

Etot = MC2



COLLISIONS

Two identical lumps of clay of (rest) mass m collide

head on, with each moving at 3
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(+ + ... +) Euclidean Riemannian
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ds2 = r2(dθ2 + sin2θ dφ2)

Tidal forces!
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signature flat curved

(+ + ... +) Euclidean Riemannian
(− + ... +) Minkowskian Lorentzian

General Relativity!

ds2 = −dt2 + a(t) dx2

Cosmology!

(c = 1)
ds2 = −

(

1 − 2m
r

)

dt2 +
dr2

(

1 − 2m
r

)

+ r2
(

dθ2 + sin2θ dφ2
)
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