THE GEOMETRY OF SPECIAL RELATIVITY

Tevian Dray

- I: Circle Geometry
- II: Hyperbola Geometry
- **III:** Special Relativity
- IV: What Next?

Write down something you know about trigonometry

 $r\theta = \operatorname{arclength}$

 $r\theta = \operatorname{arclength}$

 $r\theta = \operatorname{arclength}$

$$\cos\theta = \frac{4}{5} \implies \tan\theta = \frac{3}{4}$$

Euclidean
$$ds^2 = dx^2 + dy^2$$

Euclidean
$$ds^2 = dx^2 + dy^2$$

Trigonometry!

MEASUREMENTS

HYPERBOLA GEOMETRY

HYPERBOLA GEOMETRY

 $r\beta$ = arclength ds^2 = $|dx^2 - dy^2|$

HYPERBOLA GEOMETRY

$$r\beta$$
 = arclength
 ds^2 = $|dx^2 - dy^2|$

$$\cosh \beta = \frac{1}{2} \left(e^{\beta} + e^{-\beta} \right)$$
$$\sinh \beta = \frac{1}{2} \left(e^{\beta} - e^{-\beta} \right)$$

 $\tanh\beta=3/5$

"right angles" are not angles!

signature	
(+++)	Euclidean
$\boxed{(-+\ldots+)}$	Minkowskian

 $ds^2 = -c^2 dt^2 + dx^2$

$$ds^2 = -c^2 dt^2 + dx^2$$

WHICH GEOMETRY?

Special Relativity!

• Points in spacetime are called *events*.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope |m| > 1 (called *timelike*) represent the worldlines of observers moving at constant speed.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope |m| > 1 (called *timelike*) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a *vertical* line.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope |m| > 1 (called *timelike*) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a *vertical* line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope |m| > 1 (called *timelike*) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a *vertical* line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.
- Lines with slope |m| < 1 (called *spacelike*) represent lies of simultaneity as seen by an observer moving at constant speed.

- Points in spacetime are called *events*.
- Lines with slope $m = \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope |m| > 1 (called *timelike*) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a *vertical* line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.
- Lines with slope |m| < 1 (called *spacelike*) represent lies of simultaneity as seen by an observer moving at constant speed.
- The distance between two events along such a line is just the distance between them as measured by the corresponding observer.

THE POLE AND THE BARN

A 20 foot pole is moving towards a 10 foot barn fast enough that the pole appears to be only 10 feet long. As soon as both ends of the pole are in the barn, slam the doors. How can a 20 foot pole fit into a 10 foot barn? Draw a spacetime diagram!

THE POLE AND THE BARN

A 20 foot pole is moving towards a 10 foot barn fast enough that the pole appears to be only 10 feet long. As soon as both ends of the pole are in the barn, slam the doors. How can a 20 foot pole fit into a 10 foot barn? Draw a spacetime diagram!

LENGTH CONTRACTION

LENGTH CONTRACTION

Compare

LENGTH CONTRACTION

Compare

Compare

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

One twin travels 24 light-years to star X at speed $\frac{24}{25}c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

Straight path takes longest!

ADDITION OF VELOCITIES

Compare

Compare

RELATIVISTIC MOMENTUM

RELATIVISTIC MOMENTUM

RELATIVISTIC MOMENTUM

$$p = m\frac{dx}{d\tau} = mc \sinh \alpha$$

$$E = mc^{2} \cosh \alpha = mc^{2} \frac{dt}{d\tau} \qquad c \, dt$$

$$\left(\frac{E}{c}}{p}\right) = m\frac{d}{d\tau} \binom{ct}{x}$$

RELATIVISTIC MOMENTUM

RELATIVISTIC MOMENTUM

Energy-momentum is conserved!

signature	flat	
(+++)	Euclidean	
(-++)	Minkowskian	

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	

$$ds^2 = r^2 (d\theta^2 + \sin^2\theta \, d\phi^2)$$

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	

 $ds^2 = r^2 (d\theta^2 + \sin^2\theta \, d\phi^2)$

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	Lorentzian

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	Lorentzian

General Relativity!

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	Lorentzian

$$ds^{2} = -dt^{2} + a(t) dx^{2}$$

Cosmology!
(c = 1)

General Relativity!

signature	flat	curved
(+++)	Euclidean	Riemannian
(-++)	Minkowskian	Lorentzian

General Relativity!

BLACK HOLES

Einstein: gravity=acceleration

BLACK HOLES

Einstein: gravity=acceleration

http://www.physics.oregonstate.edu/portfolioswiki
http://www.physics.oregonstate.edu/coursewikis/GSR
http://www.math.oregonstate.edu/~tevian/geometry