THE GEOMETRY OF SPECIAL RELATIVITY

OSU

Oregon State
 UNIVERSITY

Tevian Dray

I: Circle Geometry
II: Hyperbola Geometry
III: Special Relativity
IV: What Next?

CIRCLE GEOMETRY

Write down something you know about trigonometry

CIRCLE GEOMETRY

CIRCLE GEOMETRY

$$
r \theta=\text { arclength }
$$

CIRCLE GEOMETRY

$r \theta=$ arclength

CIRCLE GEOMETRY

$r \theta=$ arclength

$$
\cos \theta=\frac{4}{5} \Longrightarrow \tan \theta=\frac{3}{4}
$$

WHICH GEOMETRY?

WHICH GEOMETRY?

$$
\begin{aligned}
& \text { Euclidean } \\
& d s^{2}=d x^{2}+d y^{2}
\end{aligned}
$$

WHICH GEOMETRY?

$$
\begin{aligned}
& \text { Euclidean } \\
& d s^{2}=d x^{2}+d y^{2}
\end{aligned}
$$

WHICH GEOMETRY?

> Euclidean
> $d s^{2}=d x^{2}+d y^{2}$

WHICH GEOMETRY?

> Euclidean
> $d s^{2}=d x^{2}+d y^{2}$

WHICH GEOMETRY?

> Euclidean
> $d s^{2}=d x^{2}+d y^{2}$

Trigonometry!

MEASUREMENTS

MEASUREMENTS

Width:

MEASUREMENTS

Width:

MEASUREMENTS

Width:

Slope:

MEASUREMENTS

Width:

Slope:

$$
m \neq m_{1}+m_{2}
$$

MEASUREMENTS

Width:

Slope:

$$
\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}
$$

MEASUREMENTS

Width:

Slope:

$$
\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{m_{1}+m_{2}}{1-m_{1} m_{2}}
$$

HYPERBOLA GEOMETRY

HYPERBOLA GEOMETRY

$$
\begin{aligned}
r \beta & =\text { arclength } \\
d s^{2} & =\left|d x^{2}-d y^{2}\right|
\end{aligned}
$$

HYPERBOLA GEOMETRY

$$
\begin{aligned}
r \beta & =\text { arclength } & \cosh \beta & =\frac{1}{2}\left(e^{\beta}+e^{-\beta}\right) \\
d s^{2} & =\left|d x^{2}-d y^{2}\right| & \sinh \beta & =\frac{1}{2}\left(e^{\beta}-e^{-\beta}\right)
\end{aligned}
$$

HYPERBOLIC TRIANGLE TRIG

HYPERBOLIC TRIANGLE TRIG

HYPERBOLIC TRIANGLE TRIG

$\tanh \beta=3 / 5$

HYPERBOLIC TRIANGLE TRIG

RIGHT TRIANGLES

RIGHT TRIANGLES

RIGHT TRIANGLES

RIGHT TRIANGLES

RIGHT TRIANGLES

"right angles" are not angles!

WHICH GEOMETRY?

WHICH GEOMETRY?

signature	
$(++\ldots+)$	Euclidean

WHICH GEOMETRY?

signature	
$(++\ldots+)$	Euclidean
$(-+\ldots+)$	Minkowskian

$$
d s^{2}=-c^{2} d t^{2}+d x^{2}
$$

WHICH GEOMETRY?

signature	
$(++\ldots+)$	Euclidean
$(-+\ldots+)$	Minkowskian
$d s^{2}=-c^{2} d t^{2}+d x^{2}$	

WHICH GEOMETRY?

signature	
$(++\ldots+)$	Euclidean
$(-+\ldots+)$	Minkowskian

$$
d s^{2}=-c^{2} d t^{2}+d x^{2}
$$

WHICH GEOMETRY?

signature	
$(++\ldots+)$	Euclidean
$(-+\ldots+)$	Minkowskian

Special Relativity!

DRAWING SPACETIME DIAGRAMS

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope $|m|>1$ (called timelike) represent the worldlines of observers moving at constant speed.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope $|m|>1$ (called timelike) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a vertical line.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope $|m|>1$ (called timelike) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a vertical line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope $|m|>1$ (called timelike) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a vertical line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.
- Lines with slope $|m|<1$ (called spacelike) represent lies of simultaneity as seen by an observer moving at constant speed.

DRAWING SPACETIME DIAGRAMS

- Points in spacetime are called events.
- Lines with slope $m= \pm 1$ represent beams of light.
- Vertical lines represent the worldline of an object at rest.
- Horizontal lines represent snapshots of constant time, that is, events which are simultaneous (in the given reference frame).
- Lines with slope $|m|>1$ (called timelike) represent the worldlines of observers moving at constant speed.
- The speed of such an observer is given by $c \tanh \beta$, where β is the (hyperbolic) angle between the worldline and a vertical line.
- The distance between two events along such a line is just the time between them as measured by the moving observer.
- Lines with slope $|m|<1$ (called spacelike) represent lies of simultaneity as seen by an observer moving at constant speed.
- The distance between two events along such a line is just the distance between them as measured by the corresponding observer.

THE POLE AND THE BARN

A 20 foot pole is moving towards a 10 foot barn fast enough that the pole appears to be only 10 feet long. As soon as both ends of the pole are in the barn, slam the doors. How can a 20 foot pole fit into a 10 foot barn? Draw a spacetime diagram!

THE POLE AND THE BARN

A 20 foot pole is moving towards a 10 foot barn fast enough that the pole appears to be only 10 feet long. As soon as both ends of the pole are in the barn, slam the doors. How can a 20 foot pole fit into a 10 foot barn? Draw a spacetime diagram!

BARN

POLE

LENGTH CONTRACTION

LENGTH CONTRACTION

LENGTH CONTRACTION

LENGTH CONTRACTION

LENGTH CONTRACTION

LENGTH CONTRACTION

$$
\ell^{\prime}=\frac{\ell}{\cosh \beta}
$$

亚

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

TWIN PARADOX

One twin travels 24 light-years to star X at speed $\frac{24}{25} c$; her twin brother stays home. When the traveling twin gets to star X , she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

$\cosh \beta=\frac{25}{7}$

$$
q=\frac{7}{\cosh \beta}=\frac{49}{25}
$$

Straight path takes longest!

ADDITION OF VELOCITIES

ADDITION OF VELOCITIES

ADDITION OF VELOCITIES

$$
\frac{v}{c}=\tanh \beta
$$

ADDITION OF VELOCITIES

$$
\begin{aligned}
& \frac{v}{c}=\tanh \beta \\
& \tanh (\alpha+\beta)= \frac{\tanh \alpha+\tanh \beta}{1+\tanh \alpha \tanh \beta}
\end{aligned}
$$

ADDITION OF VELOCITIES

$$
\begin{gathered}
\frac{v}{c}=\tanh \beta \\
\tanh (\alpha+\beta)=\frac{\tanh \alpha+\tanh \beta}{1+\tanh \alpha \tanh \beta}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u v}{c^{2}}}
\end{gathered}
$$

ADDITION OF VELOCITIES

$$
\begin{gathered}
\frac{v}{c}=\tanh \beta \\
\tanh (\alpha+\beta)=\frac{\tanh \alpha+\tanh \beta}{1+\tanh \alpha \tanh \beta}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u v}{c^{2}}}
\end{gathered}
$$

Einstein addition formula!

RELATIVISTIC MOMENTUM

RELATIVISTIC MOMENTUM

$$
\begin{aligned}
p & =m \frac{d x}{d \tau}=m c \sinh \alpha \\
E & =m c^{2} \cosh \alpha=m c^{2} \frac{d t}{d \tau}
\end{aligned}
$$

RELATIVISTIC MOMENTUM

$$
\begin{aligned}
p & =m \frac{d x}{d \tau}=m c \sinh \alpha \\
E & =m c^{2} \cosh \alpha=m c^{2} \frac{d t}{d \tau}
\end{aligned}
$$

$$
\binom{\frac{E}{c}}{p}=m \frac{d}{d \tau}\binom{c t}{x}
$$

RELATIVISTIC MOMENTUM

$$
\begin{aligned}
p & =m \frac{d x}{d \tau}=m c \sinh \alpha \\
E & =m c^{2} \cosh \alpha=m c^{2} \frac{d t}{d \tau}
\end{aligned}
$$

$$
\binom{\frac{E}{c}}{p}=m \frac{d}{d \tau}\binom{c t}{x}
$$

RELATIVISTIC MOMENTUM

$$
\begin{aligned}
p & =m \frac{d x}{d \tau}=m c \sinh \alpha \\
E & =m c^{2} \cosh \alpha=m c^{2} \frac{d t}{d \tau}
\end{aligned}
$$

$$
\binom{\frac{E}{c}}{p}=m \frac{d}{d \tau}\binom{c t}{x}
$$

Energy-momentum is conserved!

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

$$
E=m c^{2} \cosh \alpha=\frac{5}{4} m c^{2}
$$

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

$$
\begin{aligned}
& E=m c^{2} \cosh \alpha=\frac{5}{4} m c^{2} \\
& E_{\text {tot }}=2 E=\frac{5}{2} m c^{2}
\end{aligned}
$$

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

$$
\begin{aligned}
& E=m c^{2} \cosh \alpha=\frac{5}{4} m c^{2} \\
& E_{\mathrm{tot}}=2 E=\frac{5}{2} m c^{2} \\
& E_{\mathrm{tot}}=M C^{2}
\end{aligned}
$$

COLLISIONS

Two identical lumps of clay of (rest) mass m collide head on, with each moving at $\frac{3}{5} c$. What is the mass of the resulting lump of clay?

$$
\begin{gathered}
E=m c^{2} \cosh \alpha=\frac{5}{4} m c^{2} \\
E_{\mathrm{tot}}=2 E=\frac{5}{2} m c^{2} \\
E_{\mathrm{tot}}=M C^{2} \\
M=\frac{5}{2} m>2 m
\end{gathered}
$$

WHICH GEOMETRY?

signature	flat
$(++\ldots+)$	Euclidean
$(-+\ldots+)$	Minkowskian

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	

$$
d s^{2}=r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	

$$
d s^{2}=r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Tidal forces!

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	Lorentzian

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	Lorentzian

General Relativity!

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	Lorentzian

$$
\begin{gathered}
d s^{2}=-d t^{2}+a(t) d x^{2} \\
\text { Cosmology! } \\
(c=1)
\end{gathered}
$$

General Relativity!

WHICH GEOMETRY?

signature	flat	curved
$(++\ldots+)$	Euclidean	Riemannian
$(-+\ldots+)$	Minkowskian	Lorentzian

$$
\begin{gathered}
d s^{2}=-d t^{2}+a(t) d x^{2} \\
\text { Cosmology! } \\
(c=1)
\end{gathered}
$$

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 m}{r}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 m}{r}\right)} \\
& +r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{aligned}
$$

General Relativity!

BLACK HOLES

Einstein: gravity=acceleration

BLACK HOLES

Einstein: gravity=acceleration

THE GEOMETRY OF SPECIAL RELATIVITY

OSU

Oregon State
 UNIVERSITY

Tevian Dray

http://www.physics.oregonstate.edu/portfolioswiki http://www.physics.oregonstate.edu/coursewikis/GSR http://www.math.oregonstate.edu/~tevian/geometry

