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Trigonometry!
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“right angles” are not angles!
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signature
(++...4) | Euclidean
(—+...+) | Minkowskian

ds® = —c2 dt? + dz?

Special Relativity!

S
tanh 8 = %
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e Points in spacetime are called events.

e Lines with slope m = #1 represent beams of light.
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seen by an observer moving at constant speed.

e The distance between two events along such a line is just the distance
between them as measured by the corresponding observer.
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TWIN PARADOX

One twin travels 24 light-years to star X at speed g—gc; her twin brother stays

home. When the traveling twin gets to star X, she immediately turns around,

and returns at the same speed. How long does each twin think the trip took?

T
q_coshﬁ_%

25

49/25

Straight path takes longest!

24
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Finstein addition formula!
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RELATIVISTIC MOMENTUM

dx
dx _
p = m— = mcsinh «
dr
EF = mc coshoz:mc% cdt

HECOI

Energy-momentum is conserved!

cdr
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General Relativity!
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