Spin One Unknowns

Choose Unknown \# 1 under the initialize menu. This will cause atoms to leave the oven in a definite quantum state, which we call $\left|\psi_{1}\right\rangle$. Now measure the nine probabilities $\left|\left\langle\phi \mid \psi_{1}\right\rangle\right|^{2}$, where $|\phi\rangle$ corresponds to spin projections of $\hbar, 0$, and $-\hbar$ along the three axes. Fill in the table on the worksheet. Figure out what $\left|\psi_{1}\right\rangle$ is. Repeat for Unknown \# $4\left(\left|\psi_{4}\right\rangle\right)$. In solving for the unknown states, use the convention that the coefficient of $|1\rangle$ is chosen to be real and positive. Design an experiment to verify your results.

Unknown $\left|\psi_{1}\right\rangle$

Probabilities	Axis		
Result	x	y	z
$S_{i}=\hbar$			
$S_{i}=0$			
$S_{i}=-\hbar$			

Unknown $\left|\psi_{2}\right\rangle$

Probabilities	Axis		
Result	x	y	z
$S_{i}=\hbar$			
$S_{i}=0$			
$S_{i}=-\hbar$			

