A solid spinning sphere of negative charge sits in the B-field shown.

In which directions are \vec{S} and $\vec{\mu}$ of this sphere?

A) \downarrow and
B) \nearrow and
C) $\xlongequal{ }$ and
D) \downarrow and \nLeftarrow
E) Other

In which direction is the approximate force on the sphere?
$F_{z} \approx \mu_{z} \frac{\partial B_{z}}{\partial z}$

A) $U p$
B) Down
C) Zero

The two spheres are spinning with the same angular momentum, just oriented differently.

Which sphere feels the larger |force?|

$$
F_{z} \approx \mu_{z} \frac{\partial B_{z}}{\partial z}
$$

A) A
B) B
C) It's the same.

Given the classical formula $F_{z} \approx g \frac{-e}{2 m_{e}} S_{z} \frac{\partial B_{z}}{\partial z}$
What pattern would you expect to see for a thin beam of neutral silver atoms passing through a Stern-Gerlach device?
A)1 beam spot (if the atoms are neutral) B) A continuous smear at various angles C) Discrete, separated spots
D) None of these!

Stern-Gerlach Experiment

