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We introduce a series of activities to help students understand the partial derivatives that arise
in thermodynamics. Students construct thought experiments which would allow them to measure
given partial derivatives. These activities are constructed with a number of learning goals in mind,
beginning with helping students to learn to think of thermodynamic quantities in terms of how one
can measure or change them. A second learning goal is for students to understand the importance
of the quantities held fixed in either a partial derivative or an experiment. Students additionally are
given an experimental perspective—particularly when this activity is combined with real laboratory
experiments—on the meaning of either fixing or changing entropy. In this paper, we introduce the
activities and explain their learning goals. We also present select examples of student work from
classroom video and follow-up interviews.

I. INTRODUCTION

Many students find upper-division thermodynamics to
be a challenging and confusing subject.1–8 Students are
confronted with an unfamiliar set of variables: pressure,
temperature, volume and particularly entropy, and then
are asked to work with these quantities using manipula-
tions of partial derivatives that are entirely novel to them.
Even the notation used to describe partial derivatives in
thermodynamics (

∂A

∂B

)
C

is rarely used in other subfields of physics, and is not
typically taught in math classes.

Within thermodynamics, most measurements are ac-
tually a derivative of a thermodynamic quantity: e.g.,
heat capacity, coefficient of thermal expansion, compress-
ibility, bulk modulus, etc. are all expressed as partial
derivatives of one quantity measured with respect to an-
other measurable quantity. Even measurements of “sim-
ple” quantities such as pressure or temperature can be
expressed as measurements of partial derivatives of the
internal energy. Much of thermodynamics involves deriv-
ing relations between different experiments that measure
different partial derivatives. This is a challenge when
students struggle to understand these partial derivatives.

We have developed a sequence of activities to address
some of the student difficulties with partial derivatives
in thermodynamics. This sequence was developed in
the context of Energy and Entropy, the junior-level ther-
modynamics course at Oregon State University (course
description and content coverage can be found on the
Paradigms in Physics wiki9). This 2-credit course teaches
basic thermodynamics followed by a brief introduction to
statistical mechanics. Energy and Entropy features three
laboratory experiments: a rubber band lab described in
a previous paper10 and two calorimetry experiments in-
volving ice and water.

In this paper, we present three “name-the-experiment”
activities, which involve the instructor providing student
groups with a partial derivative, and asking the students

to draw a picture of an experiment that could be used
to measure that derivative. Each group of three students
works with a different derivative and we end the activity
by having each group present their solution to the en-
tire class. Each activity typically requires half an hour
of class time, including the wrap-up discussion. We do
each activity on a separate day, with progressively more
challenging derivatives addressing different learning goals
spread through the course.

There are several overall learning goals for these activ-
ities. The primary objective is for students to be able to
identify partial derivatives as descriptions of experiments
in which one quantity is changed, while certain others
are held fixed. There are also several smaller—but still
important—learning goals that span all three activities.
One of these goals is for students to understand how to
measure all the thermodynamic variables. In the past, we
have observed students failing to recognize that adding
weights to a piston will increase the pressure! In these ac-
tivities, students are repeatedly forced to remember and
describe how to control or measure each of the thermody-
namic variables. Another aim is for students to discover
for themselves that some variables are easier than oth-
ers to change, to constrain, or to measure. Finally, we
desire for students to be able to use “canonical” thought
experiments such as a gas in a piston or the idea of a
heat bath as a big tub of water. Canonical thought ex-
periments are ubiquitous in physics—they exist in every
subfield—and allow us to easily apply physical intuition
to problems. This goal is usually accomplished through
the discussions that wrap-up the activities.

One reason for these “big picture” learning goals is to
enculturate these physics majors into the physics com-
munity and aid their development as expert physicists.
As experts, we smoothly move from a symbolic repre-
sentation of a partial derivative to a description of an
experiment that would measure that derivative. For ex-

ample, experts can identify the derivative

(
∂p

∂V

)
S

as

essentially the adiabatic compressibility—even though it
differs in sign and by a factor of volume, and has been
inverted. The essence of adiabatic compressibility is
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present in this derivative. Why is this? In order to
find this derivative, one must perform the same measure-
ment that gives the adiabatic compressibility. As was
nicely summarized by Jeppsson et al, “...there is increas-
ing plausibility to the claim that expert scientists’ formal
conceptual understanding draws on concrete notions of
material substance.”11

In addition to the overall learning goals discussed
above, there are others specific to each activity. In
this paper, we describe each name-the-experiment ac-
tivity, explain the learning goals for that activity, and
discuss some particular student difficulties that are ad-
dressed. For more detailed descriptions, see the ther-
modynamics activities presented on the Paradigms in
Physics Activities wiki.9 This website also includes nar-
ratives, which are annotated transcripts of videos of class
sessions. These narratives provide examples of how these
activities can be enacted in the classroom and of what
an instructor and students might say and do during such
activities.

The final reason for all these learning goals is
affective—we believe that if students understand that
the derivatives they are manipulating are physically mea-
surable quantities, they are likely to be more interested
in understanding relationships between these derivatives.
How can students understand the the laws of thermo-
dynamics as real scientific laws if they cannot connect
the mathematical expressions involved with experimen-
tal measurements?

II. ACTIVITY 1A: SIMPLE DERIVATIVES

We begin the first activity of name-the-experiment,
with derivatives that relate to experiments that the stu-
dents can simply envision. At this stage, we have intro-
duced students to operational definitions for the thermo-
dynamic quantities, which are descriptions of how one
could measure these quantities. We have talked about
entropy and the concept of adiabatic processes as quasi-
static processes in which there is no heat exchange and
the entropy is held fixed. Finally, students have been pre-
sented the First Law of thermodynamics, which is that
the change in the internal energy of a system is the sum
of the energy added to it by heating, and energy given to
system by doing work on it:12–14

dU = d̄Q +d̄W (1)

Table I lists the derivatives that we give students in
this first activity. We group these derivatives into four
categories: easy three-dimensional derivatives (involv-
ing only pressure, temperature and volume), easy one-
dimensional derivatives (involving temperature, length
and tension), adiabatic processes (with fixed entropy)
and derivatives of the internal energy that require stu-
dents to use First Law reasoning to construct their ex-
periment. The First Law derivatives (discussed in Sec-
tion III) are the most challenging in this set, and are

simple 3D:

(
∂V

∂p

)
T

(
∂V

∂T

)
p

simple 1D:

(
∂L

∂τ

)
T

(
∂L

∂T

)
τ

simple adiabatic:

(
∂T

∂V

)
S

(
∂V

∂p

)
S

First Law:

(
∂U

∂T

)
V

(
∂U

∂p

)
S

TABLE I. Easy derivatives for the first activity, grouped into
four categories, according to the physics concepts required.

assigned as a second task to groups that quickly finish
describing their first experiment.

This first name-the-experiment activity is designed to
address several learning goals. Some of these are general
learning goals, which are addressed by all of the partial
derivatives in Table I; others are specific learning goals,
which are addressed only by some of these partial deriva-
tives. The challenge of exposing the entire class to these
specific learning goals is addressed by having each stu-
dent group report on their solution to the class at the
end of the activity.

The first general learning goal for this first activity is
to reinforce the operational definitions of thermodynamic
quantities that students have already been shown. For
instance, students need to formulate how they will mea-
sure or fix the pressure in terms of a force measurement
divided by an area, reinforcing the definition of pressure.

The second, and primary, general learning goal is for
students to appreciate the meaning and importance of
the quantity that is held fixed. Many students expect
that this quantity is redundant; they have been taught
in their mathematics course, and sometimes in earlier
physics courses, that when taking a partial derivative,
“everything else” is held constant. The belief that the
quantity held fixed is redundant is surprisingly persis-
tent, even in problems that aren’t explicitly asking about
a partial derivative. Research has shown that students
also commonly—and incorrectly—hold fixed any vari-
ables that are not currently under consideration in ques-
tions involving finite changes.15 In fact, the idea of mea-
suring the effect of changing one variable while holding
“everything else” constant is taught as early as elemen-
tary school, where it is called “control of variables” and
used to teach the scientific process.16 By having stu-
dents design their experiment in a way that explicitly
constrains the quantity held fixed, students are given a
physical perspective as to why this matters.

One of the specific learning goals is addressed by the
“adiabatic” derivatives, which require students to re-
member that fixing the entropy corresponds to thermally
insulating the system. An example from the list of adia-
batic derivatives is (

∂p

∂T

)
S

(2)

which showcases several of the student learning oppor-
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FIG. 1. Sketch of experiment to measure the derivative(
∂p

∂T

)
S

in Eq. 2 by, in fact, measuring

(
∂T

∂p

)
S

. The proce-

dure involves slowly adding weights to the top of the piston
to change its pressure, having measured the area. The pis-
ton itself is insulated to keep the process adiabatic, and we
use a thermometer inside to measure the resulting change in
temperature.

tunities at this stage. Since entropy is being held fixed,
this clearly corresponds to an adiabatic process, in which
the system is thermally insulated from its environment.
We are changing the temperature, while at the same time
not heating the system! This is a source of confusion for
students, an issue which will be more forcefully addressed
by the isothermal derivatives in the second activity (de-
scribed in Section IV).

This experiment is actually much easier to imagine if
we turn the derivative upside-down,(

∂p

∂T

)
S

=
1(

∂T

∂p

)
S

. (3)

By examining this inverse, we can see that we can change
the pressure on an insulated piston, for instance by
putting weights on it, and measure how much the tem-
perature changes with a thermometer, as illustrated in
Fig. 1, which is far easier than trying to directly change
the temperature of a thermally insulated piston.

Most students (and even some faculty) are unsure of
the validity of Eq. 3. In their math classes, students are
likely to be taught that such a relationship is, in fact,
not true for partial derivatives, which relates to the fact
that the variables held constant are not specified in math
courses. Thus we cannot write that

∂u

∂x
=

1

∂x

∂u

(4)

because x and u may be functions of different variables.
Equation 3 is only true because precisely the same vari-
ables are held fixed on each side of the equation, effec-
tively reducing the equation to a one-dimensional prob-
lem, a case which is not considered in math courses,
and which cannot be expressed in the standard (non-
thermodynamic) partial derivative notation.

III. ACTIVITY 1B: THE FIRST LAW

In the same first activity in which we do simple deriva-
tives, as described in the previous section, we also include
derivatives that require the use of the First Law, which
states that the change in internal energy of a system is
found by adding together its changes due to heating and
working.12–14 One of the First Law derivatives from Ta-
ble I is (

∂U

∂p

)
S

(5)

which is another adiabatic process, and is thus easiest
to imagine using an insulated piston. We are changing
the pressure, which is easy to manage by placing weights
on the piston. However, we don’t have a way to directly
measure the change in internal energy, and must work
this out using the First Law. Since the change is adi-
abatic, there is no heating (Q = 0), and the change in
internal energy is equal to the amount of work done, so
∆U = −p∆V for small ∆V . Thus,(

∂U

∂p

)
S

=

(
∆U

∆p

)
S

(6)

=

(
−p∆V

∆p

)
S

(7)

= −p

(
∂V

∂p

)
S

. (8)

which is a result we could also obtain using the ordinary

chain rule together with the definition p = −
(
∂U

∂V

)
S

.

Our students seldom arrive at Eq. 8 mathematically,
but students are able to express that they measure the
work by seeing how the volume changes, in order to find
the change in internal energy as pressure changes. Us-
ing Eq. 8, we can design an experiment to measure the
change in volume as we change the pressure adiabatically,
as illustrated in Fig. 2.

This is a challenging task, which requires students to
recognize that the First Law is needed to describe a mea-
surement of work needed to change the volume slightly,
to realize that changing the pressure requires that they
change the force on a piston, and to realize that the sys-
tem must be insulated. When this name-the-experiment
question was given on a final exam, over half of the stu-
dents (16 out of 27) were correctly able to express either
Eq. 8 or the idea that they would measure the work in or-
der to find ∆U . The same number of students—although
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FIG. 2. Sketch of an experiment to measure the derivative(
∂U

∂p

)
S

in Eq. 5. The piston is the same as that described

in Fig. 2. As mentioned in the text, the procedure involves
slowly adding weights to the top of the piston to change its
pressure, and measuring the change in volume using a ruler.
From this, the work is found, and from that the change in
internal energy.

not the same set of students—recognized that the system
must be insulated in order to measure a process at fixed
entropy.

As a part of a separate study,17 one of the authors
(MBK) conducted interviews with six students just af-
ter they had completed the Energy and Entropy course.
Part of the interview involved asking them to draw and
describe an experiment to measure this partial derivative
(Eq. 5), a derivative which these students had not en-
countered in class. We present here an analysis of Bob’s
response as an example of a somewhat weak (C+) stu-
dent’s response.

Bob began by identifying that one must isolate the
system to maintain constant entropy.

“First I’m just thinking, I guess just read-
ing this out loud in my head to conceptu-
ally understand what it’s asking, measure the
change in internal energy as a function of
pressure at constant entropy, which (inaudi-
ble) entropy, constant entropy is a little bit
interesting, although it’s not as hard as con-
stant pressure. Alright, so, the experi-
ment’s going to be isolated from it’s
surroundings if you want the entropy
to be constant.”

As Bob proceeded to address the question of how to mea-

FIG. 3. Interviewed student’s sketch of an experiment to

measure the derivative

(
∂U

∂p

)
S

in Eq. 5 (compare to Fig. 2).

sure internal energy, he correctly identified measuring the
change in height as a way of measuring work, with the im-
plicit assumption that this told him something about in-
ternal energy. However, he became confused about what
is being held constant, and decided to change the height
of the piston by heating the gas with the pressure held
fixed. At this point, Bob was describing a measurement

of

(
∂V

∂T

)
p

.

“So, measure the change in internal energy, at
constant pressure [long pause]. I imagine I’d
have some sort of insulated channel [begins
drawing Fig. 3] and then, a piston that can be
raised freely. It’s a little bit harder with real
world experiments, cause you have to think
about the friction of the piston. But there’s
some gas in here and we have measured, we
know the weight of the piston, all of that
and we can measure the height here [makes a
mark and labels ‘h’] and maybe some height
it gets raised to [makes second mark and la-
bels ‘h’] when we increase the temperature of
the gas. There’d be some isolated heating el-
ement inside here [draws at the bottom left]
and if you measure the heights, you can find
the work done to move this weight in the grav-
itational potential energy, from this point to
this point.”

The unusual phrase “isolated heating element” is telling,
as it suggests that Bob is confusing an “isolated system”
with one that is surrounded by insulation, as the com-
bined system of gas and heating element is in this case.
As Bob began to summarize his approach, he returned to
the idea of a thermally isolated system with no heat ex-
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change, correctly using the First Law to find the change
in internal energy under those conditions, but the heating
element is still present.

“And how I’d essentially model [pause]. The
work done would be the internal energy
because we’re not adding or removing
heat from the system and so you’d es-
sentially be measuring the work done at
constant entropy, as a function of increase
in pressure, because from the temperature in-
crease of our monitored heating element, we
can know the pressure of the gas. We put
the gas in there, we know what it is, and all
about it.”

Bob is clearly struggling with the concept of thermal
isolation. He recognizes that an isentropic process means
the the system cannot be heated, and therefore adds ther-
mal insulation to isolate the piston from its surroundings.
However, he proceeds to add a heating element to the sys-
tem, failing to recognize that the energy from the heating
element comes from the surroundings. Throughout this
episode, Bob is also inconsistent about whether he sees
the pressure as changing or held constant.

We include a discussion of this episode because it is
typical of the student reasoning that is addressed both
in small groups and in the whole-class discussion. The
activities presented in this paper give students the chance
to wrestle with these issues through interactions with
their peers, as well as the instructors and teaching assis-
tants. Additionally, observing the conversations between
students during these activities can help instructors to
better tailor their instruction to the needs and confusions
of that particular set of students.

IV. ACTIVITY 2: CHANGING ENTROPY

After we have spent some more time in the class talk-
ing about entropy from a thermodynamic standpoint, we
have a second name-the-experiment activity, in which
students examine derivatives in which the entropy itself
is changing, as listed in Table II. This set is composed
of two easier derivatives, which correspond to measure-
ments of the heat capacities CV and Cp, along with two
more challenging isothermal derivatives. Since we don’t
have a direct way to measure entropy itself, all of these
derivatives are more challenging than those in the first
activity. Instead of measuring entropy directly, we must
infer the change in entropy by measuring the heat and
using the thermodynamic definition of entropy:

∆S =

∫
d̄Qquasistatic

T
(9)

The heat can be measured by heating the system with a
resistor, as our students do in an experiment measuring
the heat capacity of water.

heat capacity measurement:

(
∂S

∂T

)
V

(
∂S

∂T

)
p

isothermal (challenging):

(
∂S

∂V

)
T

(
∂S

∂p

)
T

TABLE II. Derivatives for the second activity, in which we
change entropy, grouped according to the type of experiment
required.

FIG. 4. Student sketch of an experiment to measure the

derivative

(
∂S

∂V

)
T

in Eq. 10. The students assumed that

the material being measured was ice water, and put the ice
water in a balloon. The mixture is then heated with a resistor
and the resulting change in volume is measured.

One of the primary goals of the heat capacity deriva-
tives is to provide a review of the concept of heat capacity.
At this stage of the course, students have already mea-
sured the heat capacity of water, and many groups recog-
nize that these derivatives correspond to an experiment
that they have already performed (see the “ice calorime-
try lab” on the Paradigms in Physics Activities wiki9).
This name-the-experiment activity highlights the distinc-
tion between CV and Cp, because students are required
to explain how they hold the volume or pressure fixed.
We find this an excellent opportunity to discuss the dif-
ficulty of keeping the volume fixed and to introduce the
term “bomb calorimeter” for a device to measure CV .
Students appreciate the humor of this term.

The isothermal derivatives with changing entropy are
considerably more challenging, but also provide several
excellent learning opportunities. In particular, these
isothermal derivatives address a common student diffi-
culty: many students assume that when a system is held
at fixed temperature, it is not being heated and since Q is
zero, its entropy must also be held constant. This is com-
plementary to the issue mentioned in Section II, in which
an adiabatic process resulted in a changing temperature.
During this activity, this difficulty comes up early in stu-
dent discussions, and many groups are able to overcome
it without the need for instructor intervention.
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In one of these isothermal derivatives,(
∂S

∂V

)
T

, (10)

we need to change the volume at fixed temperature, and
measure the energy transferred between the system and
environment by heating. There are two mechanisms one
can imagine for this, neither of which is very easy.

One approach is to create a thermostat, described by
one group this way:

“We were just thinking that we could have
like something, an object that we can change
the volume and then we’d have like a resistor
and thermometer and, say like we expand it
so it cools off and measure how much heat
we have to put into the system to keep the
temperature constant.”

This approach is somewhat awkward and does require
that the temperature change somewhat, so that the ther-
mostat can respond.

The second approach, proposed by a different group,
would be to use a mixture of ice and water to hold the
temperature fixed. Figure 4 shows a student presenting
this group’s solution. The material that is being mea-
sured is ice water that is held in a balloon. A resistor
heats the ice water, and the volume of the balloon is
then measured. This student solution has a few disad-
vantages: it is hard to imagine thermally insulating the
balloon, and measuring the change in volume could be
tricky.

As mentioned in Section I, we desire to aid in the devel-
opment of these students as expert physicists. A signifi-
cant part of the culture of physics involves peer evalua-
tion and critique. Having students present their solutions
to the rest of the class can provide opportunities for stu-
dents to engage in this practice. For example, consider
the discussion between the instructor (IN) and two stu-
dents (S1 and S2) from different groups that followed the
presentation of Fig. 4:

FIG. 5. Sketch of experiment to measure the derivative(
∂S

∂V

)
T

in Eq. 10. A metal piston is inserted into an in-

sulated container of ice water with a known quantity of ice.
The volume of the piston is slowly changed, and afterwards
the mass of the ice is measured.

S1: Does that work because when you change
phase in water, uh, like, water is larger as a
solid than a liquid, which is not, most things
aren’t like that, and that’s because of the hy-
drogen bonds?

IN: Uh huh.
S1: So, it seems like that’s adding in an extra fac-

tor that doesn’t really have anything to do
with the heat, necessarily.

IN: [furrows brow]
S1: Or like, thermodynamics in general.
IN: Well it does certainly does have to do, I mean,

thermodynamics is all about what do things
actually do.

S1: But, I mean, I guess what I’m saying is if
you use something that wasn’t water, like just
some other.

IN: If you use...
S2: The change of volume would just be different.
IN: [nods] mmhmm, yeah. So, your change of vol-

ume would be different in that case.
S1: But, [pause] ok.
IN: [shifts the discussion to other issue related to

phase changes]

At the end of this exchange, it is not clear that S1 is
completely convinced by S2’s answer. However, both S1’s
critique of the previous group’s methodology and S2’s
willingness to try to address S1’s question demonstrate
that they understand that they are a part of a culture
that values peer feedback. In addition, both students
recognize that the experiment should be able to measure
this property for an arbitrary system.

A more satisfactory variant of this solution is displayed
in Fig. 5, which uses a piston such that the volume is eas-
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rightside up:

(
∂S

∂V

)
T

(
∂S

∂p

)
T

upside down:

(
∂S

∂p

)
V

(
∂S

∂V

)
p

TABLE III. Derivatives for the third activity, in which we use
Maxwell relations to find an easier experiment. In the upside
down cases, the Maxwell relation required involves the inverse
of the derivative requested.

ily controlled, and the system is taken to be separate from
the ice water. In this case, the challenge is to measure
how much ice remains after changing the volume of the
system. One could use a sieve to pull out the ice and
measure its mass. Both of these solutions (Figs. 4 and
5) have the disadvantage of requiring that we make our
measurement at 0◦C (or slightly colder perhaps, if we
use salt water), but the advantage of reinforcing the con-
cept that fixed-temperature does not mean zero heating,
and they build on the ice-water calorimetry experiments
which we do earlier in the course.

During this second name-the-experiment activity, stu-
dents encounter their first really “hard” derivatives, and
experience the difference between quantities that are con-
ceptually easy to measure and those that are inherently
challenging. In this case the heat capacities are easy to
measure, while the isothermal derivatives of entropy are
challenging, since it is hard to fix the temperature while
changing the entropy by a measured amount. Under-
standing this distinction is one of the primary learning
goals of this second activity. Allowing students time to
struggle with this challenging task that has no particu-
larly elegant solution helps them to appreciate the dif-
ference between an easily measurable quantity and one
that is less so, an appreciation that will pay off in the
next activity.

V. ACTIVITY 3: MAXWELL RELATIONS

Before the final name-the-experiment activity, we have
shown students the Legendre transforms, and asked them
find the total differentials for enthalpy, Helmholtz free
energy and Gibbs free energy. We discuss how each of
these total differentials gives us a new set of expressions
for the thermodynamic variables p, V , S and T , and
then remind students of Clairaut’s theorem regarding the
equality of mixed partial derivatives. We then introduce
Maxwell relations to our students and have students find
a given Maxwell relationship in small groups.

At this point, we use a final name-the-experiment ac-
tivity. The students are given a partial derivative to
“measure.” They then use a Maxwell relation to find a
second (ideally easier) experiment which is equivalent to
their given partial derivative. We actually ask students
to find two experiments for their derivative, one easy ex-
periment and one hard experiment. Table III lists the
derivatives that may be assigned in this activity, with

each derivative expressed as a derivative of entropy. In
two of the four cases, this results in a derivative that is
the inverse of the derivative that occurs in a Maxwell
relation, which results in an additional challenge for stu-
dents. This idea of turning derivatives “upside down”
can be used at any stage in the name-the-experiment se-
quence, to add one more step for students to consider in
analyzing a derivative.

Two of the derivatives in Table III are also present
in Table II, one of which was discussed in detail in the
previous section, and was illustrated in Fig. 5:(

∂S

∂V

)
T

(11)

This derivative required a “hard” experiment to mea-
sure, performed with very good thermal insulation and
either a thermostat or some ice-water, but we can find a

Maxwell relation involving

(
∂S

∂V

)
T

from the Helmholtz

free energy:

dF = −SdT − pdV (12)(
∂2F

∂T∂V

)
= −

(
∂S

∂V

)
T

(13)

= −
(
∂p

∂T

)
V

(14)(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

(15)

This gives us a “simple” derivative to measure, which
involves changing the temperature of a system, and mea-
suring the change in pressure required to keep the volume
fixed, as illustrated in Fig. 6. This experiment is far eas-
ier than the difficult experiment shown in Fig. 5 in which
the quantity of ice melted must be measured.

In the case above, we were able to reuse the hard ex-
periment that had we already discussed earlier in this pa-
per, but found a simpler experiment that could measure
the same quantity. When assigning derivatives to stu-
dents, we prefer to avoid students encountering a deriva-
tive that they themselves have already tackled during
a previous name-the-experiment activity. This provides
the opportunity to reinforce their learning by designing
a new experiment, instead of merely attempting to recall
a solution that they previously created. In many cases
students will have seen an experiment described by an-
other group during a the wrap-up discussion of one of the
previous activities, which can help the derivative to feel
familiar.

Let us consider another of the derivatives from Ta-
ble III, that we have not previously discussed:(

∂S

∂V

)
p

(16)

Interpreted directly, this derivative requires us to change
the volume at fixed pressure, and measure the change in
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FIG. 6. Sketch of experiment to directly measure the deriva-

tive

(
∂p

∂T

)
V

in Eq. 15. The procedure involves heating the

contents of an insulated piston with a resistor, and measuring
how much weight needs to be added to the piston in order to
return the system to its original volume.

A

FIG. 7. Sketch of experiment to directly measure the deriva-

tive

(
∂S

∂V

)
p

in Eq. 16. The procedure involves heating the

contents of an insulated piston with a resistor, while measur-
ing the current (and thus power) and the temperature, and
measuring the change in volume.

entropy. Practically, it is easier to change the entropy
and measure the change in volume, which we can do
by heating a thermally insulated system with a resistive
heating element, keeping track of the amount of power
dissipated and the temperature. This direct experiment
is illustrated in Fig. 7.

We can construct an alternative experiment that does
not require a heat measurement by seeking a Maxwell re-

lation that involves

(
∂S

∂V

)
p

. As discussed above, there

is no Maxwell relation that explicitly uses this deriva-

tive, since Maxwell relations come from mixed partial
derivatives between two thermodynamic variables that
are not conjugate pairs as p and V are. We present stu-
dents with these “upside down” derivatives, in order to
encourage students to think about how else to look at
any given derivative. In this case, we seek a Maxwell

relation involving

(
∂V

∂S

)
p

, which we can find using the

enthalpy:

dH = TdS + V dp (17)(
∂2H

∂S∂p

)
=

(
∂T

∂p

)
S

(18)

=

(
∂V

∂S

)
p

(19)(
∂V

∂S

)
p

=

(
∂T

∂p

)
S

(20)

In this case, the “simple” derivative is the inverse of the
first derivative we discussed, which could be measured
with a simple insulated piston with a thermometer and
a set of weights, as illustrated in Fig. 1. Through this
activity, students encounter unfamiliar derivatives that
can be related to much more familiar experiments.

This final activity allows students to gain experience
in the lessons of the previous activities, while at the same
time demonstrating how seemingly obscure relationships
between derivatives are actually a powerful experimental
tool. We follow this activity with a laboratory in which
we use a Maxwell relation to enable us to measure the
entropy change when isothermally stretching a rubber
band without resorting to calorimetry.10

VI. CONCLUSIONS

We have introduced a sequence of three activities in
which students describe an experiment corresponding to
a given partial derivative. These activities provide stu-
dents the opportunity to think of thermodynamic deriva-
tives as a descriptions of experiments. Students also
gain practice with the operational definitions of ther-
modynamic quantities, and experience with constructing
canonical thought experiments. These concrete ways of
thinking about abstract concepts further enculturate stu-
dents into ways of thinking like expert physicists. Finally,
these activities explicitly address student difficulties with
partial derivatives and thermodynamics that have been
previously documented in the literature.
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