
The Diatomic Ideal Gas

I’m going to quickly review and introduce the energy eigenvalues for some simple
quantum mechanical problems.

For each of the following, I’d like to sketch out the potential, then sketch the
wavefunctions and the spacing of the energy levels.

The first problem you handled was a particle in an infinite square well potential:
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where n ≥ 1. We could solve the same problem in three dimensions, and we
would have:
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The next moderately simple problem is the rigid rotator. In this case, the only
energy in the Hamiltonian is the angular kinetic energy:
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Finally, we have a simple problem that hasn’t yet come up in the paradigms,
which is the simple harmonic oscillator. In this case we have both kinetic and
potential energy:
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Of course, you also studied the hydrogen atom, but its solution is less general
than those we’ve listed here. Any diatomic molecule behaves like a rigid rotator
and a simple harmonic oscillator, and like a particle in a box, too!



Now, let’s consider a diatomic ideal gas, such as nitrogen. In this case, the
energy levels of a single molecule are given by:
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That’s an awful lot of quantum numbers, and that’s just one molecule, and
we’re neglecting any possible electronic excited states!

How does this change when we’ve got N molecules all confined in the same box?
We’ve already talked about how energies relate when we combine systems:
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where I’ve left out all the quantum numbers, since there are so very many.

If we want to know the internal energy, we’ll need to sum over every possible
state, with the probability of that particular state. To do this, we’ll need to
know the partition function, so let’s start with that.
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. . . except that this isn’t quite right. We can’t distinguish between the different
molecules... when we swap two of them in the sum, we’re really talking about
the same state! We can fix this double-counting by multiplying by an N !, which
gives us:
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Now, if we were computing the internal energy U , we’d be able to do something
very similar:
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So you can see, if we can work out the average translational kinetic energy,
rotational energy and vibrational energy of a molecule in this gas, then we’ll
easily have the total internal energy of this system just by adding everything
up and multiplying by N .



Activity

I’m going to divide you into groups. Each group will have a separate task, so
that hopefully when we’re done as a class we’ll have an answer for the total
internal energy of a diatomic ideal gas.

These sums are pretty challenging, so I’ll ask each group to consider one of two
distinct limits: the low-temperature limit and the high-temperature limit. The
low- and high-temperature limits have a different meaning for each term in the
energy.

For the translational kinetic energy, the limits will be defined by
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These energy scales have large gaps, so the translational energy may be in the
high-temperature limit while the other two are in the low-temperature limit, for
instance.

You should have five groups, so I’d like each group to do one term in the energy,
in either the low-temperature limit or the high-temperature limit, but let’s not
do the low-temperature limit of the translational kinetic energy. The reason we
avoid that particular limit is that we’ve ignored the possibility that two of our
molecules may be in precisely the same state. You know the Pauli exclusion
principle for electrons (and fermions in general), which means we could have
a problem. For bosons (all particles that aren’t fermions) there is another
problem, which I also won’t go into. As long as our temperature is high enough
that the probability of any given state is pretty low, we won’t run into these
troubles (which could give us things like a Bose-Einstein condensate).
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