Physics 651 Fall 2023

Homework #3

(due Wednesday, October 18, 2023)

1. (10 pts) Recall that $Tr(A) = \sum_{n} A_{nn} = \sum_{n} \langle \varphi_n | A | \varphi_n \rangle$, where $\{ | \varphi_n \rangle \}$ is a complete orthonormal basis. Using bra-ket algebra, prove the following relations:

- (a) Tr(ABC) = Tr(CAB) = Tr(BCA), where A, B, C are operators;
- (b) Tr $(|\psi\rangle\langle\varphi|) = \langle\varphi|\psi\rangle$, where $|\varphi\rangle, |\psi\rangle$ are state vectors.
- 2. (20 pts) Consider matrices $A = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & -i \\ 0 & i & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2i & 0 \\ i & 0 & -5i \end{pmatrix}.$
 - (a) Are A and B Hermitian? Write down the matrices representing A^{\dagger} and B^{\dagger} .
 - (b) Find eigenvalues and (normalized) eigenvectors of A. What is the relationship between Tr(A) and a sum of the eigenvalues of A? Explain.
 - (c) Show that the eigenvectors of A form a (complete and orthonormal) basis.
 - (d) Is Tr(AB) = Tr(BA)? Is det(AB) = det(A)det(B)? Is $det(B^+) = (det(B))^*$? Show.
 - (e) Calculate the commutator [A, B]. Find Tr([A,B]).
 - (f) Calculate the inverse of A, i.e. A^{-1} . What are the eigenvalues of A^{-1} ?
- 3. (15 pts) Consider a system whose Hamiltonian is given by $H = \alpha \left(\left| \varphi_1 \right\rangle \left\langle \varphi_2 \right| + \left| \varphi_2 \right\rangle \left\langle \varphi_1 \right| \right), \text{ where } \alpha \text{ is a real number having the dimensions of energy.}$
 - (a) Is H a projection operator? What about $\alpha^{-2}H^2$?
 - (b) Are $|\varphi_i\rangle$ (i=1,2) eigenstates of H?

- (c) Assuming that $|\phi_i\rangle$ (i=1,2) form a complete and orthonormal basis, find the matrix representing H in this basis. What are the eigenvalues and eigenvectors of this matrix?
- 4. (10 pts) Show that for any two operators A and B,

$$e^{B}Ae^{-B} = A + [B, A] + \frac{1}{2!}[B, [B, A]] + \frac{1}{3!}[B, [B, B, A]] + \dots$$

5. Reading assignment: Sakurai 1.3-1.4.