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Constraints on Proton Structure from Precision Atomic-Physics Measurements
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Ground-state hyperfine splittings in hydrogen and muonium are very well measured. Their difference,
after correcting for magnetic moment and reduced mass effects, is due solely to proton structure—the
large QED contributions for a pointlike nucleus essentially cancel. The rescaled hyperfine difference
depends on the Zemach radius, a fundamental measure of the proton, computed as an integral over a
product of electric and magnetic proton form factors. The determination of the Zemach radius, �1:019�
0:016� fm, from atomic physics tightly constrains fits to accelerator measurements of proton form factors.
Conversely, we can use muonium data to extract an experimental value for QED corrections to hydrogenic
hyperfine data. There is a significant discrepancy between measurement and theory, in the same direction
as a corresponding discrepancy in positronium.
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Introduction.—Quantum electrodynamics (QED) stands
out as the most precisely tested component of the standard
model. QED predictions for the classic Lamb-shift and
hyperfine splittings (HFS) in hydrogen, positronium, and
muonium have been confirmed to better than 10 ppm [1,2],
2 ppm [2,3], 2 ppm [1,2], and one part in 1:0� 107 [1],
respectively. The measurements of the electron and posi-
tron gyromagnetic ratios agree with order-�4 perturbative
QED predictions to one part in 1:0� 1011 [4]. QED and
gauge theory have thus been validated to extraordinary
precision.

In this Letter we shall show how one can combine
precision atomic-physics measurements to determine a
fundamental property of the proton to remarkable preci-
sion. The difference between the ground-state HFS of
hydrogen and muonium, after correcting for the different
magnetic moments of the muon and the proton and for
reduced mass effects, is due to the structure of the proton.
The QED contributions for a pointlike nucleus essentially
cancel. The largest proton structure contribution to the
HFS difference is proportional to the Zemach radius
[5,6], which can be computed as an integral over the
product of the elastic electric and magnetic form factors
of the proton. The remaining proton structure corrections,
the polarization contribution [3,7–10] from inelastic states
in the spin-dependent virtual Compton amplitude, and the
proton size dependence of the relativistic recoil corrections
[11,12], have small uncertainties. As we shall show, the
resulting high-precision determination of the Zemach ra-
dius from the atomic-physics measurements provides an
important constraint on fits to accelerator measurements of
the proton electric and magnetic form factors.

An important motivation for examining form factor
constraints comes from the recent polarization transfer
measurements of the proton electric form factor GE�Q2�
05=94(2)=022001(4)$23.00 02200
[13–15]. The polarization transfer results are at variance
with the published Rosenbluth measurements of GE. The
difference may well be due to corrections from hard two-
photon exchange [16,17]. One wants to examine with the
maximum possible precision whether the new determina-
tions of GE�Q2�, falling with respect to GM�Q2�, is com-
patible with other information on the form factor. The
extraction of the Zemach radius to be described here
provides such a constraint.

A sum rule for proton structure.—We now show how one
can use the HFS of the muonium atom �e���� to expose
the hadronic structure contributions to the hydrogen HFS.
For an electron bound to a positively charged particle of
mass mN , magnetic moment �N � �gN=2��e=2mN�, and
Landé g factor gN, the leading term in the HFS is the Fermi
energy,
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Here, ‘‘N’’ stands for either the p or �� nucleus. By
convention, the exact magnetic moment �N is used for
the proton or muon, but only the lowest order term, the
Bohr magneton �B, is inserted for the e�.

The ground-state hydrogen HFS can be written as

EHFS�e�p� � �1� �QED ��p
R ��S�E

p
F; (2)

where �QED represents QED corrections, �p
R represents

recoil effects, including finite-size recoil corrections, and
�S represents the proton structure contributions. The cor-
responding quantity for muonium is simply

EHFS�e
���� � �1� �QED ���

R �E
�
F : (3)

We define the fractional difference between the hydro-
gen and rescaled muonium HFS as
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The large contributions from QED corrections cancel in
�HFS. Since the HFS of hydrogen and muonium, as well as
the ratio of muon and proton magnetic moments, have been
measured to better than 30 ppb, �HFS can be determined to
high precision from experiment.

From Eqs. (2) and (3), we have
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����=E�

F
�
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R �

: (5)

Thus we can obtain a result for the proton structure con-
tribution in terms of quantities measurable to high preci-
sion in atomic physics:

�S � �HFS ���
R ��p

R � �HFS��QED � ��
R �: (6)

The cross terms are smaller than the uncertainties in the
leading terms, and here �QED can be approximated as
�=2�.

The proton structure contributions consist of the classic
Zemach term computed from a convolution of elastic form
factors and the polarization contribution from the inelastic
hadronic states contributing to the spin-dependent virtual
Compton scattering: �S � �Z ��pol. In addition, as we
discuss below, the relativistic recoil corrections of order
�me=mp are modified by the finite size of the proton. The
Zemach term takes into account the finite-size correction to
the proton magnetic interactions as well as the finite-size
distortions of the electron’s orbit in the hydrogen atom
[5,6]: �Z � �2�mehriZ�1� �rad

Z �, where hriZ is the radius
of the proton as calculated from the Zemach integral

hriZ � �
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with GE and GM the electric and magnetic form factors of
the proton, normalized with GE�0� � GM�0�=�1� �p� �

1, and �p � gp=2� 1. Additionally, �rad
Z is a radiative

correction to the Zemach term estimated in [11]. It has
been calculated analytically in [18] for the case where
the form factors are represented by dipole forms:
�rad
Z � ��=3��
2 ln��2=m2

e� � 4111=420�. With �2 �
0:71 GeV2, this yields �rad

Z � 0:0153.
The main part of the inelastic contribution can be con-

structed from the work of Iddings [7], and Drell and
Sullivan [8]. Compact expressions are given by De
Rafael [9], Gnädig and Kuti [10], and Faustov and
Martynenko [3] in terms of the Pauli form factor F2 and
spin-dependent structure functions g1 and g2 of the proton.

Evaluation of the constraint.—We will consider
each term on the right hand side of Eq. (6). To compute
�HFS from (4), we use the measured hydrogen HFS
02200
[19] EHFS�e
�p� � 1420:405 751 766 7�9� MHz and muon-

ium HFS [20] EHFS�e
���� � 4463:302 765�53� MHz.

The measured masses are [21] mp �

938:272 029�80� MeV, m� � 105:658 369�9� MeV, and
me � 0:510 998 918�44� MeV. The ratio of magnetic mo-
ments has been measured to high precision, �0:028 ppm;
the value obtained is [22] ��=�p � 3:183 345 118�89�.
From these values we find �HFS � 145:51�4� ppm.

The order-� relativistic recoil correction �N
R has been

computed by Arnowitt [23] for muonium �N � ��.
Bodwin and Yennie [11] quote the corrections to second
order in � in their Equation (1.10), which is analogous to
Eq. (8) below. With use of [21] ��1 � 137:035 999 11�46�
and [24] �� � 0:001 165 920 8�6�, this correction is eval-
uated to be ��

R � �177:45 ppm.
Bodwin and Yennie [11] have also computed the cor-

rections to their formula in the hydrogen case due to the
finite size of the proton from elastic intermediate states.
Note that these are finite-size corrections to the recoil
correction and are distinct from the Zemach correction.
A mark of the distinction is that after scaling out the lowest
order Fermi HFS, the recoil corrections go to zero as
�mp=me� ! 1, whereas the Zemach correction does not.
The Bodwin-Yennie pointlike result to order �2 is [11]
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with [21] �p � 1:792 847 351�28�. This gives �p
R �

��2:01� 0:46� ppm, where the two terms are from O���
and O��2�. Quoting [11], finite-size corrections change
this to �p

R � 
�5:22�1� � 0:46� ppm � 5:68�1� ppm,
where the quoted error is an estimate using the dipole
form factor for the proton (both GE and GM) with mass
parameter �2 � 0:71� 0:02 GeV2. An additional correc-
tion [18] of 0.09 ppm brings �p

R to 5.77 ppm.
Volotka et al. [25] have reevaluated the finite-size cor-

rections to the proton recoil corrections with the same
magnetic radius, but with a charge radius taken from
Ref. [26], and find �p

R � 5:86 ppm, or 0.18 ppm larger
than Bodwin and Yennie. By forcing the magnetic form
factor to reproduce their result for the Zemach integral,
Volotka et al. obtain a second value of 6.01 ppm. We shall
use the first Volotka result and include an uncertainty of
0.15 ppm to cover the difference between the modified
Bodwin-Yennie and the second Volotka determinations.
Note that structure-dependence uncertainty within the re-
coil corrections is still well under the uncertainty of the
polarization terms, and that this uncertainty in the recoil
1-2



PRL 94, 022001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JANUARY 2005
term can be reduced as knowledge of the form factors
improves.

From the individual values for �HFS, ��
R , and �p

R, we
obtain �S � �37:66�16� ppm. Thus the contribution of
proton structure is constrained by atomic physics with an
uncertainty well under 1%.

The Zemach term.—We shall subtract the polarization
contributions to isolate the Zemach term and then explore
its relevance to new form factor parametrizations.
Although the polarization contributions have been long
known to be small [9,10], the error in �Z is essentially
all due to the uncertainty in �pol. From Faustov and
Martynenko [3], we take �pol � 1:4� 0:6 ppm, which
implies �Z � ��39:1� 0:6� ppm and thus hriZ �
�1:019� 0:016� fm. The unit conversion used !hc �
197:326 968�17� MeV fm.

Predictions for �Z and hriZ as computed from a
selection of parametrizations of the form factors are
given in Table I. The first row is the textbook standard,
wherein both GM and GE are given by the dipole form.
The result, �Z � �38:72 ppm, can already be found
in [11]. New analytic fits to the form factors [27,28]
make a significant change in the Zemach integral,
of up to 6%. The form factor parametrization given in
[26] yields [6] hriZ � 1:086�12� fm. It is not clear
why the large difference exists. The scattering data is
subject to radiative and other corrections; any difference
highlights the usefulness of having the precise value that
we have derived. Not all of the �Z or hriZ for the different
models in the table are compatible with the results ex-
tracted from the analysis of the atomic data. However,
the GM–GE combination suggested in the third row from
the end of the table shows that fully compatible models
exist.
TABLE I. Proton electric charge radius
���������
hr2Ei

q
, Zemach contrib

parametrizations of GE and GM. The results should be compare
as obtained from analysis of atomic HFS data. The dipole form
JLab is [14] �1� 0:13 Q2

GeV2�
GM

1��p
. Parametrizations A-I and A-II

(BCHH), I and II, use F2=F1 � 
1=�2
p �Q2=�1:25 GeV�2��1=2 an

�Q2=0:380 GeV2�3ln5:1�1�Q2=4m2
���, respectively, [28]. The last c

Parametrizations
���������
hr2Ei

q
GM GE (fm)

dipole GM=�1� �p� 0.811
dipole JLab 0.830
A-I A-I 0.868
A-I GM=�1� �p� 0.863
A-II A-II 0.829
A-II JLab 0.855
dipole BCHH-I 0.789
A-II BCHH-I 0.905
dipole BCHH-II 0.881
A-II BCHH-II 0.905

02200
The table also shows results for the charge radius���������
hr2Ei

q
�

�����������������������������������������
�6 d

dQ2 GE�Q
2�jQ2�0

q
. The values compare to re-

sults from Lamb-shift measurements [29] (0.871(12) fm), a
continued-fraction fit to GE [26] (0.895(18) fm), a standard
empirical fit [30] (0.862(12) fm), and the 2002 Committee
on Data for Science and Technology value [22]
(0.8750(68) fm).

The differences among the Zemach integrals for differ-
ent form factors derive mainly from the lower Q range of
the integral, where the different parametrizations of GE are
less variant, but their effect on the integral is greater. This is
seen in the last two columns of Table I. About 30% of the
Zemach integral comes from Q above 0.8 GeV, but little of
this has to do with the form factors. Recall that the nu-
merator of the Zemach integrand is GEGM=�1� �p� � 1,
and for high Q the form factors fall away, leaving the
‘‘�1.’’ In the region above 0.8 GeV, the �1 contributes
0.314 fm.

Two fits by Arrington [27] are used in Table I, denoted
A-I and A-II. Fit A-I uses only Rosenbluth data and A-II
uses GE=GM from the polarization results [13–15]. While
A-II represents the data well overall, for Q below 0.8 GeV
its GE=GM ratio falls too quickly by nearly a factor of 2
compared to the actual polarization data. The same is true
for the fit denoted JLab [14].

Discussion.—In this Letter we have shown how one can
combine high-precision atomic-physics measurements of
the ground-state hydrogen and muonium HFS and the ratio
of muon to proton magnetic moments to isolate the proton
structure contributions. In our method, the theoretically
complex QED corrections to the bound-state problem do
not appear [31]. Remarkably, the total proton structure
contribution �S � �37:66�16� ppm to the hydrogen HFS
is determined to better than 1%. Since the polarization
ution �Z to the HFS, and Zemach radius hriZ for various
d to �Z � ��39:1� 0:6� ppm or hriZ � �1:019� 0:016� fm,
is GM�Q

2� � �1� �p�=�1�Q2=0:71 GeV2�2. The GE labeled
are from [27]. Those labeled Brodsky-Carlson-Hiller-Hwang

d F2=F1 � �p
1� �Q2=0:791 GeV2�2ln7:1�1�Q2=4m2
���=
1�

olumn gives the contribution to hriZ from Q> 0:8 GeV.

�Z hriZ �fm�

(ppm) total Q> 0:8 GeV

�38:72 1.009 0.305
�39:23 1.022 0.306
�40:84 1.064 0.305
�40:71 1.061 0.305
�39:68 1.034 0.305
�40:09 1.045 0.305
�38:26 0.997 0.305
�39:12 1.019 0.305
�40:29 1.050 0.305
�41:14 1.072 0.305
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contribution can be determined from the measured spin-
dependent proton structure functions g1�x;Q

2� and
g2�x;Q2�, we obtain a precise value for the Zemach radius
hriZ � �1:019� 0:016� fm, which is defined from a con-
volution of the GE and GM form factors. This new deter-
mination gives an important constraint on the analytic form
and fits to the proton form factors at small Q2. The preci-
sion of the Zemach radius will be further improved when
new, more precise data for g1 and g2, especially at small �
and Q2, becomes available.

The proton structure terms can also be extracted using
the hydrogen HFS alone [25,32]. The Zemach radius ob-
tained this way is larger than our result; however, this
determination depends on the QED bound-state radiative
correction.

Conversely, by combining the muonium and hydrogen
HFS data, one can obtain an ‘‘experimental’’ value for
the purely QED bound-state radiative corrections:
�QED � 1135:27�13� ppm. This gives �QED � �=2� �

�26:14�13� ppm. To minimize the uncertainty, we take
advantage of the measured ratio [22] mp=me �

1836:152 672 61�85�. This value of �QED is approximately
0.9 ppm smaller than the calculated QED correction used
in [25,32]. Neither the uncertainty in the polarization nor
nuclear recoil corrections contribute to this difference. It is
worth noting that in the case of the positronium HFS, the
theoretical prediction from the QED bound-state radiative
corrections is also higher than the experimental value by
several standard deviations [33].

Our method of combining experimental atomic physics
has other applications; for example, measurements of the
difference of the Lamb shifts (or Rydberg spectra) of
muonium and hydrogen could potentially give a very pre-
cise value for the proton’s electric charge radius, since
again the QED radiative corrections essentially cancel.
Similarly, the difference of lepton anomalous moments
a� � ae directly exposes the hadronic and weak correc-
tions to the muon moment.
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