
PyVISA
Release 1.1

Torsten Bronger

21 November 2006

Aachen, Germany
bronger@physik.rwth-aachen.de

Copyright c© 2005 Torsten Bronger.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included as a separate file ‘LICENSE’ in the
PyVISA distribution.

Abstract

PyVISA enables you to control your measurement and test equipment – digital multimeters, motors, sensors and
the like. This document covers the easy-to-use visa module of the PyVISA package. It implements control of
measurement devices in a straightforward and convenient way. The design goal is to combine HT Basic’s simplicity
with Python’s modern syntax and powerful set of libraries.

PyVISA doesn’t implement VISA itself. Instead, PyVISA provides bindings to the VISA library (a DLL or
“shared object” file). This library is usually shipped with your GPIB interface or software like LabVIEW. Alterna-
tively, you can download it from your favourite equipment vendor (National Instruments, Agilent, etc).

PyVISA is free software under the terms of the GPL. It can be downloaded at PyVISA’s project page. You can
report bugs there, too. Additionally, I’m happy about feedback from people who’ve given it a try. So far, we have
positive reports of various National Instruments GPIB adapters (connected through PCI, USB, and RS 232) and the
Agilent 82357 A, for both Windows and Linux.

As far as USB instruments are concerned, you must make sure that they act as ordinary USB devices and not as
so-called HDI devices (like keyboard and mouse).

Contents

1 An example 2
1.1 Example for serial (RS232) device . 3
1.2 A more complex example . 3
1.3 VISA resource names . 4

2 visa — module contents 5
2.1 Module functions . 5
2.2 Module classes . 5

General devices . 5
GPIB devices . 7
Serial devices . 7

3 Common properties of instrument variables 8
3.1 Timeouts . 8

3.2 Chunk length . 9
3.3 Reading binary data . 9

Example . 9
3.4 Termination characters . 10

“delay” and “send end” . 10

4 Mixing with direct VISA commands 11

5 Installation 11
5.1 Prerequisites . 11
5.2 Setting up the module . 11

Windows . 11
Linux . 12
INI file for customisation . 12
Setting the VISA library in the program . 12

6 About PyVISA 13

Index 14

1 An example

Let’s go in medias res and have a look at a simple example:

from visa import *

my_instrument = instrument("GPIB::14")
my_instrument.write("*IDN?")
print my_instrument.read()

This example already shows the two main design goals of PyVISA: preferring simplicity over generality, and doing it
the object-oriented way.

Every instrument is represented in the source by an object instance. In this case, I have a GPIB instrument with
instrument number 14, so I create the instance (i. e. variable) called my instrument accordingly:

my_instrument = instrument("GPIB::14")

"GPIB::14" is the instrument’s resource name. See section 1.3 for a short explanation of that.

Then, I send the message “*IDN?” to the device, which is the standard GPIB message for “what are you?” or – in
some cases – “what’s on your display at the moment?”:

my_instrument.write("*IDN?")

Finally, I print the instrument’s answer on the screen:

2 1 An example

print my_instrument.read()

1.1 Example for serial (RS232) device

The only RS 232 device in my lab is an old Oxford ITC 4 temperature controller, which is connected through COM 2
with my computer. The following code prints its self-identification on the screen:

from visa import *

itc4 = instrument("COM2")
itc4.write("V")
print itc4.read()

Instead of separate write and read operations, you can do both with one ask() call. Thus, the above source code is
equivalent to

from visa import *

itc4 = instrument("COM2")
print itc4.ask("V")

It couldn’t be simpler. See section 2.2 for further information about serial devices.

1.2 A more complex example

The following example shows how to use SCPI commands with a Keithley 2000 multimeter in order to measure
10 voltages. After having read them, the program calculates the average voltage and prints it on the screen.

I’ll explain the program step-by-step. First, we have to initialise the instrument:

from visa import instrument

keithley = instrument("GPIB::12")
keithley.write("*rst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for all further operations on the instrument. Immediately
after it, we send the initialisation and reset message to the instrument.

The next step is to write all the measurement parameters, in particular the interval time (500 ms) and the number of
readings (10) to the instrument. I won’t explain it in detail. Have a look at an SCPI and/or Keithley 2000 manual.

1.1 Example for serial (RS232) device 3

interval_in_ms = 500
number_of_readings = 10

keithley.write("status:measurement:enable 512; *sre 1")
keithley.write("sample:count %d" % number_of_readings)
keithley.write("trigger:source bus")
keithley.write("trigger:delay %f" % (interval_in_ms / 1000.0))

keithley.write("trace:points %d" % number_of_readings)
keithley.write("trace:feed sense1; feed:control next")

Okay, now the instrument is prepared to do the measurement. The next three lines make the instrument waiting for a
trigger pulse, trigger it, and wait until it sends a “service request”:

keithley.write("initiate")
keithley.trigger()
keithley.wait_for_srq()

With sending the service request, the instrument tells us that the measurement has been finished and that the results are
ready for transmission. We could read them with ‘keithley.ask("trace:data?")’ however, then we’d get

NDCV-000.0004E+0,NDCV-000.0005E+0,NDCV-000.0004E+0,NDCV-000.0007E+0,
NDCV-000.0000E+0,NDCV-000.0007E+0,NDCV-000.0008E+0,NDCV-000.0004E+0,
NDCV-000.0002E+0,NDCV-000.0005E+0

which we would have to convert to a Python list of numbers. Fortunately, the ask for values() method does
this work for us:

voltages = keithley.ask_for_values("trace:data?")
print "Average voltage: ", sum(voltages) / len(voltages)

Finally, we should reset the instrument’s data buffer and SRQ status register, so that it’s ready for a new run. Again,
this is explained in detail in the instrument’s manual:

keithley.ask("status:measurement?")
keithley.write("trace:clear; feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but that’s another story.)

1.3 VISA resource names

If you use the function instrument(), you must tell this function the VISA resource name of the instrument you
want to connect to.

Generally, it starts with the bus type, followed by a double colon ‘::’, followed by the number within the bus. For
example,

GPIB::10

denotes the GPIB instrument with the number 10. If you have two GPIB boards and the instrument is connected to

4 1 An example

board number 1, you must write

GPIB1::10

As for the bus, things like “GPIB”, “USB”, “ASRL” (for serial/parallel interface) are possible. So for connecting to an
instrument at COM2, the resource name is

ASRL2

(Since only one instrument can be connected with one serial interface, there is no double colon parameter.) However,
most VISA systems allow aliases such as ‘COM2’ or ‘LPT1’. You may also add your own aliases.

The resource name is case-insensitive. It doesn’t matter whether you say ‘ASRL2’ or ‘asrl2’.

For further information, I have to refer you to a comprehensive VISA description like
http://www.ni.com/pdf/manuals/370423a.pdf.

2 visa — module contents

This section is a reference to the functions and classes of the visa module, which is the main module of the PyVISA
package.

2.1 Module functions

get instruments list([use aliases])
returns a list with all instruments that are known to the local VISA system. If you’re lucky, these are all
instruments connected with the computer.

The boolean use aliases is True by default, which means that the more human-friendly aliases like “COM1”
instead of “ASRL1” are returned. With some VISA systems1 you can define your own aliases for each device,
e. g. “keithley617” for “GPIB0::15::INSTR”. If use aliases is False, only standard resource names
are returned.

instrument(resource name[, **keyw])
returns an instrument variable for the instrument given by resource name. It saves you from calling one of the
instrument classes directly by choosing the right one according to the type of the instrument. So you have one
function to open all of your instruments.

The parameter resource name may be any valid VISA instrument resource name, see section 1.3. In particular,
you can use a name returned by get instruments list() above.

All further keyword arguments given to this function are passed to the class constructor of the respective instru-
ment class. See section 2.2 for a table with all allowed keyword arguments and their meanings.

2.2 Module classes

General devices

class Instrument(resource name[, **keyw])
represents an instrument, e. g. a measurement device. It is independent of a particular bus system, i. e. it may
be a GPIB, serial, USB, or whatever instrument. However, it is not possible to perform bus-specific operations

1such as the “Measurement and Automation Center” by National Instruments

5

on instruments created by this class. For this, have a look at the specialised classes like GpibInstrument
(section 2.2).

The parameter resource name takes the same syntax as resource specifiers in VISA. Thus, it begins with the
bus system followed by “::”, continues with the location of the device within the bus system, and ends with an
optional “::INSTR”.

Possible keyword arguments are:
Keyword Description
timeout timeout in seconds for all device operations, see section 3.1. Default: 5
chunk size Length of read data chunks in bytes, see section 3.2. Default: 20 kB
values format Data format for lists of read values, see section 3.3. Default: ascii
term char termination characters, see section 3.4. Default: None
send end whether to assert END after each write operation, see section 3.4. Default: True
delay delay in seconds after each write operation, see section 3.4. Default: 0
lock whether you want to have exclusive access to the device. Default: VI NO LOCK

For further information about the locking mechanism, see The VISA library implementation.

The class Instrument defines the following methods and attributes:

write(message)
writes the string message to the instrument.

read()
returns a string sent from the instrument to the computer.

read values([format])
returns a list of decimal values (floats) sent from the instrument to the computer. See section 1.2 above. The list
may contain only one element or may be empty.

The optional format argument overrides the setting of values format. For information about that, see section 3.3.

ask(message)
sends the string message to the instrument and returns the answer string from the instrument.

ask for values(message[, format])
sends the string message to the instrument and reads the answer as a list of values, just as read values()
does.

The optional format argument overrides the setting of values format. For information about that, see section 3.3.

clear()
resets the device. This operation is highly bus-dependent. I refer you to the original VISA documentation, which
explains how this is achieved for VXI, GPIB, serial, etc.

trigger()
sends a trigger signal to the instrument.

read raw()
returns a string sent from the instrument to the computer. In contrast to read(), no termination characters are
checked or stripped. You get the pristine message.

timeout
The timeout in seconds for each I/O operation. See section 3.1 for further information.

term chars
The termination characters for each read and write operation. See section 3.4 for further information.

send end
Whether or not to assert EOI (or something equivalent, depending on the interface type) after each write opera-
tion. See section 3.4 for further information.

delay
Time in seconds to wait after each write operation. See section 3.4 for further information.

6 2 visa — module contents

values format
The format for multi-value data sent from the instrument to the computer. See section 3.3 for further information.

GPIB devices

class GpibInstrument(gpib identifier[, board number[, **keyw]])
represents a GPIB instrument. If gpib identifier is a string, it is interpreted as a VISA resource name (sec-
tion 1.3). If it is a number, it denotes the device number at the GPIB bus.

The optional board number defaults to zero. If you have more that one GPIB bus system attached to the
computer, you can select the bus with this parameter.

The keyword arguments are interpreted the same as with the class Instrument.

Note: Since this class is derived from the class Instrument, please refer to section 2.2 for the basic operations.
GpibInstrument can do everything that Instrument can do, so it simply extends the original class with GPIB-
specific operations.

The class GpibInstrument defines the following methods:

wait for srq([timeout])
waits for a serial request (SRQ) coming from the instrument. Note that this method is not ended when another
instrument signals an SRQ, only this instrument.

The timeout argument, given in seconds, denotes the maximal waiting time. The default value is 25 (seconds).
If you pass None for the timeout, this method waits forever if no SRQ arrives.

class Gpib([board number])
represents a GPIB board. Although most setups have at most one GPIB interface card or USB-GPIB device
(with board number 0), theoretically you may have more. Be that as it may, for board-level operations, i. e.
operations that affect the whole bus with all connected devices, you must create an instance of this class.

The optional GPIB board number board number defaults to 0.

The class Gpib defines the following method:

send ifc()
pulses the interface clear line (IFC) for at least 0.1 seconds.

Note: You needn’t store the board instance in a variable. Instead, you may send an IFC signal just by saying
‘Gpib().send ifc()’.

Serial devices

Please note that “serial instrument” means only RS232 and parallel port instruments, i. e. everything attached to COM
and LPT. In particular, it does not include USB instruments. For USB you have to use Instrument instead.

class SerialInstrument(resource name[, **keyw])
represents a serial instrument. resource name is the VISA resource name, see section 1.3.

The general keyword arguments are interpreted the same as with the class Instrument. The only difference
is the default value for term chars: For serial instruments, CR (carriage return) is used to terminate readings
and writings.

Note: Since this class is derived from the class Instrument, please refer to section 2.2 for all operations.
SerialInstrument can do everything that Instrument can do.

The class SerialInstrument defines the following additional properties. Note that all properties can also be
given as keyword arguments when calling the class constructor or instrument().

2.2 Module classes 7

baud rate
The communication speed in baud. The default value is 9600.

data bits
Number of data bits contained in each frame. Its value must be from 5 to 8. The default is 8.

stop bits
Number of stop bits contained in each frame. Possible values are 1, 1.5, and 2. The default is 1.

parity
The parity used with every frame transmitted and received. Possible values are:

Value Description
no parity no parity bit is used
odd parity the parity bit causes odd parity
even parity the parity bit causes even parity
mark parity the parity bit exists but it’s always 1
space parity the parity bit exists but it’s always 0

The default value is no parity.

end input
This determines the method used to terminate read operations. Possible values are:

Value Description
last bit end input read will terminate as soon as a character arrives with its last data bit set
term chars end input read will terminate as soon as the last character of term chars is received

The default value is term chars end input.

3 Common properties of instrument variables

3.1 Timeouts

Very most VISA I/O operations may be performed with a timeout. If a timeout is set, every operation that takes longer
than the timeout is aborted and an exception is raised. Timeouts are given per instrument.

For all PyVISA objects, a timeout is set with

my_device.timeout = 25

Here, my device may be a device, an interface or whatever, and its timeout is set to 25 seconds. Floating-point values
are allowed. If you set it to zero, all operations must succeed instantaneously. You must not set it to None. Instead, if
you want to remove the timeout, just say

del my_device.timeout

Now every operation of the resource takes as long as it takes, even indefinitely if necessary.

The default timeout is 5 seconds, but you can change it when creating the device object:

my_instrument = instrument("ASRL1", timeout = 8)

This creates the object variable my instrument and sets its timeout to 8 seconds. In this context, a timeout value of
None is allowed, which removes the timeout for this device.

Note that your local VISA library may round up this value heavily. I experienced this effect with my National Instru-
ments VISA implementation, which rounds off to 0, 1, 3 and 10 seconds.

8 3 Common properties of instrument variables

3.2 Chunk length

If you read data from a device, you must store it somewhere. Unfortunately, PyVISA must make space for the data
before it starts reading, which means that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is 20 kilobytes long by default. If there’s still
data to be read, PyVISA repeats the procedure and eventually concatenates the results and returns it to you. Those
20 kilobytes are large enough so that mostly one read cycle is sufficient.

The whole thing happens automatically, as you can see. Normally you needn’t worry about it. However, some devices
don’t like to send data in chunks. So if you have trouble with a certain device and expect data lengths larger than the
default chunk length, you should increase its value by saying e. g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

3.3 Reading binary data

Some instruments allow for sending the measured data in binary form. This has the advantage that the data transfer is
much smaller and takes less time. PyVISA currently supports three forms of transfers:

ascii This is the default mode. It assumes a normal string with comma- or whitespace-separated values.

single The values are expected as a binary sequence of IEEE floating point values with single precision (i. e. four
bytes each).2

double The same as single, but with values of double precision (eight bytes each).

You can set the form of transfer with the property values format, either with the generation of the object,

my_instrument = instrument("GPIB::12", values_format = single)

or later by setting the property directly:

my_instrument.values_format = single

Setting this option affects the methods read values() and ask for values(). In particular, you must assure
separately that the device actually sends in this format.

In some cases it may be necessary to set the byte order, also known as endianness. PyVISA assumes little-endian as
default. Some instruments call this “swapped” byte order. However, there is also big-endian byte order. In this case
you have to append ‘| big endian’ to your values format:

my_instrument = instrument("GPIB::12", values_format = single | big_endian)

Example

In order to demonstrate how easy reading binary data can be, remember our example from section 1.2. You just have
to append the lines

2All flavours of binary data streams defined in IEEE 488.2 are supported, i. e. those beginning with “〈header〉 #〈digit〉”, where 〈header〉 is
optional, and 〈digit〉 may also be “0”.

3.2 Chunk length 9

keithley.write("format:data sreal")
keithley.values_format = single

to the initialisation commands, and all measurement data will be transmitted as binary. You will only notice the
increased speed, as PyVISA converts it into the same list of values as before.

3.4 Termination characters

Somehow the computer must detect when the device is finished with sending a message. It does so by using different
methods, depending on the bus system. In most cases you don’t need to worry about termination characters because
the defaults are very good. However, if you have trouble, you may influence termination characters with PyVISA.

Termination characters may be one character or a sequence of characters. Whenever this character or sequence occurs
in the input stream, the read operation is terminated and the read message is given to the calling application. The
next read operation continues with the input stream immediately after the last termination sequence. In PyVISA, the
termination characters are stripped off the message before it is given to you.

You may set termination characters for each instrument, e. g.

my_instrument.term_chars = CR

Alternatively you can give it when creating your instrument object:

my_instrument = instrument("GPIB::10", term_chars = CR)

The default value depends on the bus system. Generally, the sequence is empty, in particular for GPIB. For RS232
it’s CR.

Well, the real default is not "" (the empty string) but None. There is a subtle difference: "" really means the
termination characters are not used at all, neither for read nor for write operations. In contrast, None means that every
write operation is implicitly terminated with CR+LF. This works well with most instruments.

All CRs and LFs are stripped from the end of a read string, no matter how term chars is set.

The termination characters sequence is an ordinary string. CR and LF are just string constants that allow readable
access to "\r" and "\n". Therefore, instead of CR+LF, you can also write "\r\n", whichever you like more.

“delay” and “send end”

There are two further options related to message termination, namely send end and delay. send end is a
boolean. If it’s True (the default), the EOI line is asserted after each write operation, signalling the end of the
operation. EOI is GPIB-specific but similar action is taken for other interfaces.

The argument delay is the time in seconds to wait after each write operation. So you could write:

my_instrument = instrument("GPIB::10", send_end = False, delay = 1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the way, omitting EOI is not recommended, so
if you omit it nevertheless, you should know what you’re doing.

10 3 Common properties of instrument variables

4 Mixing with direct VISA commands

You can mix the high-level object-oriented approach described in this document with middle-level VISA function calls
in module vpp43 as described in The VISA library implementation which is also part of the PyVISA package. By
doing so, you have full control of your devices. I recommend to import the VISA functions with

from pyvisa import vpp43

Then you can use them with ‘vpp43.function name(...)’.

The VISA functions need to know what session you are referring to. PyVISA opens exactly one session for each
instrument or interface and stores its session handle in the instance attribute vi. For example, these two lines are
equivalent:

my_instrument.clear()
vpp43.clear(my_instrument.vi)

In case you need the session handle for the default resource manager, it’s stored in resource manager.session:

from visa import *
from pyvisa import vpp43
my_instrument_handle = vpp43.open(resource_manager.session, "GPIB::14",

VI_EXCLUSIVE_LOCK)

5 Installation

5.1 Prerequisites

PyVISA needs Python version 2.3 or newer.

The PyVISA package doesn’t include a low-level VISA implementation itself. You have to get it from one of the
VISA vendors, e. g. from the National Instruments VISA pages. NI sells its VISA kit for approx. $ 400. However, it’s
bundled with most of NI’s hardware and software. Besides, the download itself is free, and one user reported that he
had successfully installed VISA support without buying anything.

I can’t really tell about other vendors but well-equipped labs probably have VISA already (even if they don’t know).
Please install VISA properly before you proceed.

Additionally, your Python installation needs a fresh version of ctypes. By the way, if you use Windows, I recommend
to install Enthought Python. It is a special Python version with all-included philosophy for scientific and engineering
applications.3

5.2 Setting up the module

Windows

PyVISA expects a file called ‘visa32.dll’ in the PATH. For example, on my system you find this file in
‘C:\WINNT\system32\’. Either copy it there or expand your PATH. Alternatively, you can create an INI file. You
must do this anyway if the file is not called ‘visa32.dll’ on your system.

3Of course, it’s highly advisable not to have installed another version of Python on your system before you install Enthought Python.

11

Linux

For Linux, the VISA library is by default at ‘/usr/local/vxipnp/linux/bin/libvisa.so.7’. If this is not the case on your
installation, you have to create an INI file.

INI file for customisation

If the VISA library file is not at the default place, or doesn’t have the default name for your operating system (see
above), you can tell PyVISA by creating a file called ‘.pyvisarc’ (mind the leading dot).

Another motivation for setting up an INI file is that you have more than one VISA library, e. g. because two GPIB
interfaces of two different vendors are connected with the computer. However, in this case I’d try to use both interfaces
with one library because sometimes you’re lucky and it works. Note that PyVISA is currently not able to switch
between DLLs while the program is running.

For Windows, place it in your “Documents and Settings” folder,4 e. g.

C:\Documents and Settings\smith\.pyvisarc

if “smith” is the name of your login account. For Linux, put it in your home directory.

This file has the format of an INI file. For example, if the library is at ‘/usr/lib/libvisa.so.7’, the file ‘.pyvisarc’ must
contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that “[Paths]” is treated case-sensitively.

You can define a site-wide configuration file at ‘/usr/share/pyvisa/.pyvisarc’. (It may also be ‘/usr/local/. . . ’ depending
on the location of your Python.) Under Windows, this file is usually placed at ‘c:\Python24\share\pyvisa\.pyvisarc’.

Setting the VISA library in the program

You can also set the path to your VISA library at the beginning of your program. Just start the program with

from pyvisa.vpp43 import visa_library
visa_library.load_library("/usr/lib/libvisa.so.7")
from visa import *
...

Keep in mind that the backslashes of Windows paths must be properly escaped, or the path must be preceeded by ‘r’:

from pyvisa.vpp43 import visa_library
visa_library.load_library(r"c:\WINNT\system32\agvisa32.dll")
from visa import *
...

4its name depends on the language of your Windows version

12 5 Installation

6 About PyVISA

PyVISA was originally programmed by Torsten Bronger, Aachen/Germany and Gregor Thalhammer, Innsbruck/Aus-
tria. It bases on earlier experiences by Thalhammer.

Its homepage is http://sourceforge.net/projects/pyvisa/. Please report bugs there. I’m also very keen to know whether
PyVISA works for you or not. Thank you!

13

Index
A
alias, 5
ask() (Instrument method), 6
ask for values() (Instrument method), 6
authors, 13

B
baud rate (SerialInstrument attribute), 8
binary data, 9

C
chunk length, 9
chunk size (in module visa), 6
clear() (Instrument method), 6
“COM 2”, 3
configuration, 11
ctypes (module), 11

D
data bits (SerialInstrument attribute), 8
delay, 10
delay

in module visa, 6
Instrument attribute, 6

E
end input (SerialInstrument attribute), 8
ending sequence, 10
environment variables

PATH, 11
EOI line, 10

F
factory function, 5

G
get instruments list() (in module visa), 5
Gpib (class in visa), 7
GpibInstrument (class in visa), 7

I
INI file, 12
installation, 11
Instrument (class in visa), 5
instrument() (in module visa), 5
instrument(), 2, 3

K
Keithley 2000, 3
keyword arguments, common, 6

L
lock (in module visa), 6

M
Measurement and Automation Center, 5

P
parity (SerialInstrument attribute), 8
PATH, 11
prerequisites, 11
.pyvisarc, 12

R
read() (Instrument method), 6
read raw() (Instrument method), 6
read values() (Instrument method), 6
resource name, 4
RS 232, 3

S
SCPI, 3
send end, 10
send end

in module visa, 6
Instrument attribute, 6

send ifc() (Gpib method), 7
serial device, 3
SerialInstrument (class in visa), 7
service request, 4
setting up PyVISA, 11
stop bits (SerialInstrument attribute), 8

T
term char (in module visa), 6
term chars, 10
term chars (Instrument attribute), 6
termination characters, 10
timeout, 8
timeout

in module visa, 6
Instrument attribute, 6

trigger, 4
trigger() (Instrument method), 6

V
values format, 9
values format

in module visa, 6
Instrument attribute, 7

visa (module), 5

14

VISA commands, mixing with, 11
VISA resource name, 4
visa32.dll, 11
vpp43 (module), 11

W
wait for srq() (GpibInstrument method), 7
write() (Instrument method), 6

Index 15

	1 An example
	1.1 Example for serial (RS232) device
	1.2 A more complex example
	1.3 VISA resource names

	2 visa --- module contents
	2.1 Module functions
	2.2 Module classes
	General devices
	GPIB devices
	Serial devices

	3 Common properties of instrument variables
	3.1 Timeouts
	3.2 Chunk length
	3.3 Reading binary data
	Example

	3.4 Termination characters
	``delay'' and ``send_end''

	4 Mixing with direct VISA commands
	5 Installation
	5.1 Prerequisites
	5.2 Setting up the module
	Windows
	Linux
	INI file for customisation
	Setting the VISA library in the program

	6 About PyVISA
	Index

